These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 27841492)

  • 21. Hydrodynamic oscillations and variable swimming speed in squirmers close to repulsive walls.
    Lintuvuori JS; Brown AT; Stratford K; Marenduzzo D
    Soft Matter; 2016 Sep; 12(38):7959-7968. PubMed ID: 27714374
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Collective Motion of Microorganisms in a Viscoelastic Fluid.
    Li G; Ardekani AM
    Phys Rev Lett; 2016 Sep; 117(11):118001. PubMed ID: 27661719
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Direct measurement of the flow field around swimming microorganisms.
    Drescher K; Goldstein RE; Michel N; Polin M; Tuval I
    Phys Rev Lett; 2010 Oct; 105(16):168101. PubMed ID: 21231017
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Magnetoviscosity of dilute suspensions of magnetic ellipsoids obtained through rotational Brownian dynamics simulations.
    Sánchez JH; Rinaldi C
    J Colloid Interface Sci; 2009 Mar; 331(2):500-6. PubMed ID: 19100560
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Detention Times of Microswimmers Close to Surfaces: Influence of Hydrodynamic Interactions and Noise.
    Schaar K; Zöttl A; Stark H
    Phys Rev Lett; 2015 Jul; 115(3):038101. PubMed ID: 26230827
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Near-wall dynamics of concentrated hard-sphere suspensions: comparison of evanescent wave DLS experiments, virial approximation and simulations.
    Liu Y; Bławzdziewicz J; Cichocki B; Dhont JK; Lisicki M; Wajnryb E; Young YN; Lang PR
    Soft Matter; 2015 Oct; 11(37):7316-27. PubMed ID: 26264420
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hydrodynamic interactions and the diffusivity of spheroidal particles.
    Marath NK; Wettlaufer JS
    J Chem Phys; 2019 Jul; 151(2):024107. PubMed ID: 31301717
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hydrodynamics Defines the Stable Swimming Direction of Spherical Squirmers in a Nematic Liquid Crystal.
    Lintuvuori JS; Würger A; Stratford K
    Phys Rev Lett; 2017 Aug; 119(6):068001. PubMed ID: 28949617
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dynamics of a microorganism in a sheared viscoelastic liquid.
    De Corato M; D'Avino G
    Soft Matter; 2016 Dec; 13(1):196-211. PubMed ID: 27414249
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Distribution of particle displacements due to swimming microorganisms.
    Thiffeault JL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):023023. PubMed ID: 26382519
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Self-diffusion in two-dimensional hard ellipsoid suspensions.
    Zheng Z; Han Y
    J Chem Phys; 2010 Sep; 133(12):124509. PubMed ID: 20886952
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nonlinear dynamics of a microswimmer in Poiseuille flow.
    Zöttl A; Stark H
    Phys Rev Lett; 2012 May; 108(21):218104. PubMed ID: 23003306
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chemotaxis mediated interactions can stabilize the hydrodynamic instabilities in active suspensions.
    Nejad MR; Najafi A
    Soft Matter; 2019 Apr; 15(15):3248-3255. PubMed ID: 30916708
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hydrodynamic interaction of microswimmers near a wall.
    Li GJ; Ardekani AM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013010. PubMed ID: 25122372
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hydrodynamic interactions in squirmer dumbbells: active stress-induced alignment and locomotion.
    Clopés J; Gompper G; Winkler RG
    Soft Matter; 2020 Dec; 16(47):10676-10687. PubMed ID: 33089276
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An effective and efficient model of the near-field hydrodynamic interactions for active suspensions of bacteria.
    Zhang B; Leishangthem P; Ding Y; Xu X
    Proc Natl Acad Sci U S A; 2021 Jul; 118(28):. PubMed ID: 34260387
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effective viscosity of a suspension of flagellar-beating microswimmers: Three-dimensional modeling.
    Jibuti L; Zimmermann W; Rafaï S; Peyla P
    Phys Rev E; 2017 Nov; 96(5-1):052610. PubMed ID: 29347779
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Active colloidal suspensions exhibit polar order under gravity.
    Enculescu M; Stark H
    Phys Rev Lett; 2011 Jul; 107(5):058301. PubMed ID: 21867100
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phase separation and coexistence of hydrodynamically interacting microswimmers.
    Blaschke J; Maurer M; Menon K; Zöttl A; Stark H
    Soft Matter; 2016 Dec; 12(48):9821-9831. PubMed ID: 27869284
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effective viscosity of puller-like microswimmers: a renormalization approach.
    Gluzman S; Karpeev DA; Berlyand LV
    J R Soc Interface; 2013 Dec; 10(89):20130720. PubMed ID: 24068178
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.