These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 27841494)

  • 1. Size consistency in smoothed dissipative particle dynamics.
    Faure G; Maillet JB; Roussel J; Stoltz G
    Phys Rev E; 2016 Oct; 94(4-1):043305. PubMed ID: 27841494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiscale modeling with smoothed dissipative particle dynamics.
    Kulkarni PM; Fu CC; Shell MS; Leal LG
    J Chem Phys; 2013 Jun; 138(23):234105. PubMed ID: 23802949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A hybrid smoothed dissipative particle dynamics (SDPD) spatial stochastic simulation algorithm (sSSA) for advection-diffusion-reaction problems.
    Brian D; Bruno J; Zhen L; Tau-Mu Y; Linda P
    J Comput Phys; 2019 Feb; 378():1-17. PubMed ID: 31031417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybrid molecular-continuum simulations using smoothed dissipative particle dynamics.
    Petsev ND; Leal LG; Shell MS
    J Chem Phys; 2015 Jan; 142(4):044101. PubMed ID: 25637963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybrid smoothed dissipative particle dynamics and immersed boundary method for simulation of red blood cells in flows.
    Ye T; Phan-Thien N; Lim CT; Peng L; Shi H
    Phys Rev E; 2017 Jun; 95(6-1):063314. PubMed ID: 28709282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluctuating hydrodynamics in periodic domains and heterogeneous adjacent multidomains: Thermal equilibrium.
    Bian X; Li Z; Deng M; Karniadakis GE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):053302. PubMed ID: 26651811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiscale simulation of ideal mixtures using smoothed dissipative particle dynamics.
    Petsev ND; Leal LG; Shell MS
    J Chem Phys; 2016 Feb; 144(8):084115. PubMed ID: 26931689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-diffusion coefficient in smoothed dissipative particle dynamics.
    Litvinov S; Ellero M; Hu X; Adams NA
    J Chem Phys; 2009 Jan; 130(2):021101. PubMed ID: 19154012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Consistent scaling of thermal fluctuations in smoothed dissipative particle dynamics.
    Vázquez-Quesada A; Ellero M; Español P
    J Chem Phys; 2009 Jan; 130(3):034901. PubMed ID: 19173537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Smoothed dissipative particle dynamics model for polymer molecules in suspension.
    Litvinov S; Ellero M; Hu X; Adams NA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 2):066703. PubMed ID: 18643393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Implicit atomistic viscosities in smoothed dissipative particle dynamics.
    Borreguero M; Bezgin D; Adami S; Adams NA
    Phys Rev E; 2019 Sep; 100(3-1):033318. PubMed ID: 31640035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Foundations of dissipative particle dynamics.
    Flekkoy EG; Coveney PV; De Fabritiis G
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Aug; 62(2 Pt A):2140-57. PubMed ID: 11088680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrodynamically Coupled Brownian Dynamics: A coarse-grain particle-based Brownian dynamics technique with hydrodynamic interactions for modeling self-developing flow of polymer solutions.
    Ahuja VR; van der Gucht J; Briels WJ
    J Chem Phys; 2018 Jan; 148(3):034902. PubMed ID: 29352779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Smoothed dissipative particle dynamics model for mesoscopic multiphase flows in the presence of thermal fluctuations.
    Lei H; Baker NA; Wu L; Schenter GK; Mundy CJ; Tartakovsky AM
    Phys Rev E; 2016 Aug; 94(2-1):023304. PubMed ID: 27627409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validation data for a hybrid smoothed dissipative particle dynamics (SDPD) spatial stochastic simulation algorithm (sSSA) method.
    Drawert B; Jacob B; Li Z; Yi TM; Petzold L
    Data Brief; 2019 Feb; 22():11-15. PubMed ID: 30581900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissipative forces for Lagrangian models in computational fluid dynamics and application to smoothed-particle hydrodynamics.
    Violeau D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):036705. PubMed ID: 19905244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A mesoscopic bridging scale method for fluids and coupling dissipative particle dynamics with continuum finite element method.
    Kojic M; Filipovic N; Tsuda A
    Comput Methods Appl Mech Eng; 2013 Jan; 197(6-8):821-833. PubMed ID: 23814322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New parallelizable schemes for integrating the Dissipative Particle Dynamics with Energy conservation.
    Homman AA; Maillet JB; Roussel J; Stoltz G
    J Chem Phys; 2016 Jan; 144(2):024112. PubMed ID: 26772559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generalised dissipative particle dynamics with energy conservation: density- and temperature-dependent potentials.
    Avalos JB; Lísal M; Larentzos JP; Mackie AD; Brennan JK
    Phys Chem Chem Phys; 2019 Dec; 21(45):24891-24911. PubMed ID: 31690923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Particle-based simulations of red blood cells-A review.
    Ye T; Phan-Thien N; Lim CT
    J Biomech; 2016 Jul; 49(11):2255-2266. PubMed ID: 26706718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.