These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 27841505)
1. From network reliability to the Ising model: A parallel scheme for estimating the joint density of states. Ren Y; Eubank S; Nath M Phys Rev E; 2016 Oct; 94(4-1):042125. PubMed ID: 27841505 [TBL] [Abstract][Full Text] [Related]
2. Speed-up of Monte Carlo simulations by sampling of rejected states. Frenkel D Proc Natl Acad Sci U S A; 2004 Dec; 101(51):17571-5. PubMed ID: 15591337 [TBL] [Abstract][Full Text] [Related]
3. Computing the partition function, ensemble averages, and density of states for lattice spin systems by sampling the mean. Gillespie D J Comput Phys; 2013 Oct; 250():1-12. PubMed ID: 23935210 [TBL] [Abstract][Full Text] [Related]
4. Nonequilibrium antiferromagnetic mixed-spin Ising model. Godoy M; Figueiredo W Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Sep; 66(3 Pt 2A):036131. PubMed ID: 12366208 [TBL] [Abstract][Full Text] [Related]
5. Accurate estimation of the density of states from Monte Carlo transition probability data. Fenwick MK J Chem Phys; 2006 Oct; 125(14):144905. PubMed ID: 17042648 [TBL] [Abstract][Full Text] [Related]
6. Dynamical properties of random-field Ising model. Sinha S; Mandal PK Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022121. PubMed ID: 23496474 [TBL] [Abstract][Full Text] [Related]
7. Dynamical Computation of the Density of States and Bayes Factors Using Nonequilibrium Importance Sampling. Rotskoff GM; Vanden-Eijnden E Phys Rev Lett; 2019 Apr; 122(15):150602. PubMed ID: 31050526 [TBL] [Abstract][Full Text] [Related]
8. Analytically solvable processes on networks. Smilkov D; Kocarev L Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 2):016104. PubMed ID: 21867254 [TBL] [Abstract][Full Text] [Related]
9. Efficient Irreversible Monte Carlo Samplers. Faizi F; Deligiannidis G; Rosta E J Chem Theory Comput; 2020 Apr; 16(4):2124-2138. PubMed ID: 32097548 [TBL] [Abstract][Full Text] [Related]
10. Comparing Monte Carlo methods for finding ground states of Ising spin glasses: Population annealing, simulated annealing, and parallel tempering. Wang W; Machta J; Katzgraber HG Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):013303. PubMed ID: 26274303 [TBL] [Abstract][Full Text] [Related]
11. Cavity master equation for the continuous time dynamics of discrete-spin models. Aurell E; Del Ferraro G; Domínguez E; Mulet R Phys Rev E; 2017 May; 95(5-1):052119. PubMed ID: 28618512 [TBL] [Abstract][Full Text] [Related]
12. A comparison of Monte Carlo-based Bayesian parameter estimation methods for stochastic models of genetic networks. Mariño IP; Zaikin A; Míguez J PLoS One; 2017; 12(8):e0182015. PubMed ID: 28797087 [TBL] [Abstract][Full Text] [Related]
13. Analysis of autocorrelation times in neural Markov chain Monte Carlo simulations. Białas P; Korcyl P; Stebel T Phys Rev E; 2023 Jan; 107(1-2):015303. PubMed ID: 36797952 [TBL] [Abstract][Full Text] [Related]
14. Determining the density of states for classical statistical models: a random walk algorithm to produce a flat histogram. Wang F; Landau DP Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):056101. PubMed ID: 11736008 [TBL] [Abstract][Full Text] [Related]
15. Acceleration of Markov chain Monte Carlo simulations through sequential updating. Ren R; Orkoulas G J Chem Phys; 2006 Feb; 124(6):64109. PubMed ID: 16483198 [TBL] [Abstract][Full Text] [Related]
16. Generalized Monte Carlo loop algorithm for two-dimensional frustrated Ising models. Wang Y; De Sterck H; Melko RG Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 2):036704. PubMed ID: 22587206 [TBL] [Abstract][Full Text] [Related]
17. Small-network approximations for geometrically frustrated Ising systems. Zhuang B; Lannert C Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031107. PubMed ID: 22587038 [TBL] [Abstract][Full Text] [Related]
18. Numerically exact correlations and sampling in the two-dimensional Ising spin glass. Thomas CK; Middleton AA Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):043303. PubMed ID: 23679544 [TBL] [Abstract][Full Text] [Related]
19. Monte Carlo study of degenerate ground states and residual entropy in a frustrated honeycomb lattice Ising model. Andrews S; De Sterck H; Inglis S; Melko RG Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 1):041127. PubMed ID: 19518193 [TBL] [Abstract][Full Text] [Related]
20. Efficient algorithm for random-bond ising models in 2D. Loh YL; Carlson EW Phys Rev Lett; 2006 Dec; 97(22):227205. PubMed ID: 17155838 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]