These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 27841508)
1. Revised Chapman-Enskog analysis for a class of forcing schemes in the lattice Boltzmann method. Li Q; Zhou P; Yan HJ Phys Rev E; 2016 Oct; 94(4-1):043313. PubMed ID: 27841508 [TBL] [Abstract][Full Text] [Related]
2. Forcing scheme in pseudopotential lattice Boltzmann model for multiphase flows. Li Q; Luo KH; Li XJ Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 2):016709. PubMed ID: 23005565 [TBL] [Abstract][Full Text] [Related]
3. Effect of the forcing term in the pseudopotential lattice Boltzmann modeling of thermal flows. Li Q; Luo KH Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053022. PubMed ID: 25353895 [TBL] [Abstract][Full Text] [Related]
4. Forcing scheme analysis for the axisymmetric lattice Boltzmann method under incompressible limit. Zhang L; Yang S; Zeng Z; Chen J; Yin L; Chew JW Phys Rev E; 2017 Apr; 95(4-1):043311. PubMed ID: 28505753 [TBL] [Abstract][Full Text] [Related]
5. Incorporating forcing terms in cascaded lattice Boltzmann approach by method of central moments. Premnath KN; Banerjee S Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):036702. PubMed ID: 19905241 [TBL] [Abstract][Full Text] [Related]
6. Achieving thermodynamic consistency in a class of free-energy multiphase lattice Boltzmann models. Li Q; Yu Y; Huang RZ Phys Rev E; 2021 Jan; 103(1-1):013304. PubMed ID: 33601620 [TBL] [Abstract][Full Text] [Related]
7. Asymptotic equivalence of forcing terms in the lattice Boltzmann method within second-order accuracy. Suzuki K; Inamuro T; Yoshino M Phys Rev E; 2020 Jul; 102(1-1):013308. PubMed ID: 32794911 [TBL] [Abstract][Full Text] [Related]
8. Cascaded lattice Boltzmann method with improved forcing scheme for large-density-ratio multiphase flow at high Reynolds and Weber numbers. Lycett-Brown D; Luo KH Phys Rev E; 2016 Nov; 94(5-1):053313. PubMed ID: 27967140 [TBL] [Abstract][Full Text] [Related]
10. Theoretical and numerical study of axisymmetric lattice Boltzmann models. Huang H; Lu XY Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jul; 80(1 Pt 2):016701. PubMed ID: 19658832 [TBL] [Abstract][Full Text] [Related]
11. Theory of the Lattice Boltzmann method: Derivation of macroscopic equations via the Maxwell iteration. Yong WA; Zhao W; Luo LS Phys Rev E; 2016 Mar; 93(3):033310. PubMed ID: 27078487 [TBL] [Abstract][Full Text] [Related]
12. Forcing term in single-phase and Shan-Chen-type multiphase lattice Boltzmann models. Huang H; Krafczyk M; Lu X Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 2):046710. PubMed ID: 22181310 [TBL] [Abstract][Full Text] [Related]
13. Lattice Boltzmann model for high-order nonlinear partial differential equations. Chai Z; He N; Guo Z; Shi B Phys Rev E; 2018 Jan; 97(1-1):013304. PubMed ID: 29448467 [TBL] [Abstract][Full Text] [Related]
14. Galilean invariant lattice Boltzmann scheme for natural convection on square and rectangular lattices. van der Sman RG Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 2):026705. PubMed ID: 17025565 [TBL] [Abstract][Full Text] [Related]
15. Improved lattice Boltzmann modeling of binary flow based on the conservative Allen-Cahn equation. Ren F; Song B; Sukop MC; Hu H Phys Rev E; 2016 Aug; 94(2-1):023311. PubMed ID: 27627416 [TBL] [Abstract][Full Text] [Related]
16. Prediction of the moments in advection-diffusion lattice Boltzmann method. II. Attenuation of the boundary layers via double-Λ bounce-back flux scheme. Ginzburg I Phys Rev E; 2017 Jan; 95(1-1):013305. PubMed ID: 28208489 [TBL] [Abstract][Full Text] [Related]
17. Lattice-Boltzmann model based on field mediators for immiscible fluids. Santos LO; Facin PC; Philippi PC Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Nov; 68(5 Pt 2):056302. PubMed ID: 14682879 [TBL] [Abstract][Full Text] [Related]
18. Lattice Boltzmann model for the correct convection-diffusion equation with divergence-free velocity field. Huang R; Wu H Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):033302. PubMed ID: 25871241 [TBL] [Abstract][Full Text] [Related]
19. Eliminating cubic terms in the pseudopotential lattice Boltzmann model for multiphase flow. Huang R; Wu H; Adams NA Phys Rev E; 2018 May; 97(5-1):053308. PubMed ID: 29906992 [TBL] [Abstract][Full Text] [Related]
20. Transition point prediction in a multicomponent lattice Boltzmann model: Forcing scheme dependencies. Küllmer K; Krämer A; Joppich W; Reith D; Foysi H Phys Rev E; 2018 Feb; 97(2-1):023313. PubMed ID: 29548255 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]