These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 27841512)

  • 1. Feedback control stabilization of critical dynamics via resource transport on multilayer networks: How glia enable learning dynamics in the brain.
    Virkar YS; Shew WL; Restrepo JG; Ott E
    Phys Rev E; 2016 Oct; 94(4-1):042310. PubMed ID: 27841512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Partial Breakdown of Input Specificity of STDP at Individual Synapses Promotes New Learning.
    Volgushev M; Chen JY; Ilin V; Goz R; Chistiakova M; Bazhenov M
    J Neurosci; 2016 Aug; 36(34):8842-55. PubMed ID: 27559167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasticity of Neuron-Glial Transmission: Equipping Glia for Long-Term Integration of Network Activity.
    Croft W; Dobson KL; Bellamy TC
    Neural Plast; 2015; 2015():765792. PubMed ID: 26339509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synaptic dynamics: linear model and adaptation algorithm.
    Yousefi A; Dibazar AA; Berger TW
    Neural Netw; 2014 Aug; 56():49-68. PubMed ID: 24867390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatiotemporal learning in analog neural networks using spike-timing-dependent synaptic plasticity.
    Yoshioka M; Scarpetta S; Marinaro M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 1):051917. PubMed ID: 17677108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Introduction to spiking neural networks: Information processing, learning and applications.
    Ponulak F; Kasinski A
    Acta Neurobiol Exp (Wars); 2011; 71(4):409-33. PubMed ID: 22237491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A network of coincidence detector neurons with periodic and chaotic dynamics.
    Watanabe M; Aihara K
    IEEE Trans Neural Netw; 2004 Sep; 15(5):980-6. PubMed ID: 15484874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GABAA receptor-mediated feedforward and feedback inhibition differentially modulate hippocampal spike timing-dependent plasticity.
    Jang HJ; Kwag J
    Biochem Biophys Res Commun; 2012 Oct; 427(3):466-72. PubMed ID: 22940549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synaptic plasticity: taming the beast.
    Abbott LF; Nelson SB
    Nat Neurosci; 2000 Nov; 3 Suppl():1178-83. PubMed ID: 11127835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synchrony detection and amplification by silicon neurons with STDP synapses.
    Bofill-i-petit A; Murray AF
    IEEE Trans Neural Netw; 2004 Sep; 15(5):1296-304. PubMed ID: 15484902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Learning rules and network repair in spike-timing-based computation networks.
    Hopfield JJ; Brody CD
    Proc Natl Acad Sci U S A; 2004 Jan; 101(1):337-42. PubMed ID: 14694191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptive self-organization in a realistic neural network model.
    Meisel C; Gross T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):061917. PubMed ID: 20365200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A model of indispensability of a large glial layer in cerebrovascular circulation.
    Gandrakota R; Chakravarthy VS; Pradhan RK
    Neural Comput; 2010 Apr; 22(4):949-68. PubMed ID: 20028221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spike-time-dependent plasticity and heterosynaptic competition organize networks to produce long scale-free sequences of neural activity.
    Fiete IR; Senn W; Wang CZ; Hahnloser RH
    Neuron; 2010 Feb; 65(4):563-76. PubMed ID: 20188660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Learning the structure of correlated synaptic subgroups using stable and competitive spike-timing-dependent plasticity.
    Meffin H; Besson J; Burkitt AN; Grayden DB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 1):041911. PubMed ID: 16711840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Precise Synaptic Efficacy Alignment Suggests Potentiation Dominated Learning.
    Hartmann C; Miner DC; Triesch J
    Front Neural Circuits; 2015; 9():90. PubMed ID: 26793070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of random external background stimulation on network synaptic stability after tetanization: a modeling study.
    Chao ZC; Bakkum DJ; Wagenaar DA; Potter SM
    Neuroinformatics; 2005; 3(3):263-80. PubMed ID: 16077162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A neuron-glia signalling network in the active brain.
    Bezzi P; Volterra A
    Curr Opin Neurobiol; 2001 Jun; 11(3):387-94. PubMed ID: 11399439
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Use of Hebbian Cell Assemblies for Nonlinear Computation.
    Tetzlaff C; Dasgupta S; Kulvicius T; Wörgötter F
    Sci Rep; 2015 Aug; 5():12866. PubMed ID: 26249242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A hierarchical neural-network model for control and learning of voluntary movement.
    Kawato M; Furukawa K; Suzuki R
    Biol Cybern; 1987; 57(3):169-85. PubMed ID: 3676355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.