These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 27841539)
1. Long-range correlations in rectangular cavities containing pointlike perturbations. Białous M; Yunko V; Bauch S; Ławniczak M; Dietz B; Sirko L Phys Rev E; 2016 Oct; 94(4-1):042211. PubMed ID: 27841539 [TBL] [Abstract][Full Text] [Related]
2. Enhancement factor in the regime of semi-Poisson statistics in a singular microwave cavity. Białous M; Sirko L Phys Rev E; 2022 Dec; 106(6-1):064208. PubMed ID: 36671148 [TBL] [Abstract][Full Text] [Related]
3. Nearest-neighbor distribution for singular billiards. Bogomolny E; Giraud O; Schmit C Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 2):056214. PubMed ID: 12059687 [TBL] [Abstract][Full Text] [Related]
4. Statistical properties of spectral fluctuations of N interacting bosons in a harmonic trap. Roy K; Chakrabarti B; Kota VK Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):052137. PubMed ID: 25493769 [TBL] [Abstract][Full Text] [Related]
5. Spectral fluctuations of billiards with mixed dynamics: from time series to superstatistics. Abul-Magd AY; Dietz B; Friedrich T; Richter A Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 2):046202. PubMed ID: 18517705 [TBL] [Abstract][Full Text] [Related]
6. Semi-Poisson Statistics in Relativistic Quantum Billiards with Shapes of Rectangles. Dietz B Entropy (Basel); 2023 May; 25(5):. PubMed ID: 37238517 [TBL] [Abstract][Full Text] [Related]
7. Spectral properties of quantized barrier billiards. Wiersig J Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 2A):046217. PubMed ID: 12005986 [TBL] [Abstract][Full Text] [Related]
8. Current statistics for transport through rectangular and circular billiards. Sadreev AF Phys Rev E Stat Nonlin Soft Matter Phys; 2004; 70(1 Pt 2):016208. PubMed ID: 15324153 [TBL] [Abstract][Full Text] [Related]
9. Experimental investigation of the elastic enhancement factor in a microwave cavity emulating a chaotic scattering system with varying openness. Białous M; Dietz B; Sirko L Phys Rev E; 2019 Jul; 100(1-1):012210. PubMed ID: 31499840 [TBL] [Abstract][Full Text] [Related]
10. Experimental Width Shift Distribution: A Test of Nonorthogonality for Local and Global Perturbations. Gros JB; Kuhl U; Legrand O; Mortessagne F; Richalot E; Savin DV Phys Rev Lett; 2014 Nov; 113(22):224101. PubMed ID: 25494073 [TBL] [Abstract][Full Text] [Related]
11. Experimental simulation of quantum graphs by microwave networks. Hul O; Bauch S; Pakoński P; Savytskyy N; Zyczkowski K; Sirko L Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 2):056205. PubMed ID: 15244902 [TBL] [Abstract][Full Text] [Related]
12. Correlations due to localization in quantum eigenfunctions of disordered microwave cavities. Pradhan P; Sridhar S Phys Rev Lett; 2000 Sep; 85(11):2360-3. PubMed ID: 10978010 [TBL] [Abstract][Full Text] [Related]
13. Chaos and Regularity in the Doubly Magic Nucleus ^{208}Pb. Dietz B; Heusler A; Maier KH; Richter A; Brown BA Phys Rev Lett; 2017 Jan; 118(1):012501. PubMed ID: 28106417 [TBL] [Abstract][Full Text] [Related]
14. Spectra and spectral correlations of microwave graphs with symplectic symmetry. Rehemanjiang A; Richter M; Kuhl U; Stöckmann HJ Phys Rev E; 2018 Feb; 97(2-1):022204. PubMed ID: 29548070 [TBL] [Abstract][Full Text] [Related]
15. Missing-level statistics and analysis of the power spectrum of level fluctuations of three-dimensional chaotic microwave cavities. Ławniczak M; Białous M; Yunko V; Bauch S; Sirko L Phys Rev E; 2018 Jul; 98(1-1):012206. PubMed ID: 30110821 [TBL] [Abstract][Full Text] [Related]
16. Diffractive orbits in the length spectrum of a two-dimensional microwave cavity with a small scatterer. Laurent D; Legrand O; Mortessagne F Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 2):046219. PubMed ID: 17155165 [TBL] [Abstract][Full Text] [Related]
17. Parametric correlations of the energy levels of ray-splitting billiards. Savytskyy N; Kohler A; Bauch S; Blümel R; Sirko L Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Sep; 64(3 Pt 2):036211. PubMed ID: 11580426 [TBL] [Abstract][Full Text] [Related]
18. Spectral Properties of Dirac Billiards at the van Hove Singularities. Dietz B; Klaus T; Miski-Oglu M; Richter A; Wunderle M; Bouazza C Phys Rev Lett; 2016 Jan; 116(2):023901. PubMed ID: 26824540 [TBL] [Abstract][Full Text] [Related]