These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 27841622)
1. Equilibrium free-energy differences at different temperatures from a single set of nonequilibrium transitions. Patra PK; Bhattacharya B Phys Rev E; 2016 Oct; 94(4-1):040101. PubMed ID: 27841622 [TBL] [Abstract][Full Text] [Related]
2. Bias and error in estimates of equilibrium free-energy differences from nonequilibrium measurements. Gore J; Ritort F; Bustamante C Proc Natl Acad Sci U S A; 2003 Oct; 100(22):12564-9. PubMed ID: 14528008 [TBL] [Abstract][Full Text] [Related]
3. Jarzynski matrix equality: Calculating the free-energy difference by nonequilibrium simulations with an arbitrary initial distribution. Wan B; Yang C; Wang Y; Zhou X Phys Rev E; 2016 Apr; 93():043312. PubMed ID: 27176433 [TBL] [Abstract][Full Text] [Related]
4. Equilibrium sampling by reweighting nonequilibrium simulation trajectories. Yang C; Wan B; Xu S; Wang Y; Zhou X Phys Rev E; 2016 Mar; 93(3):033309. PubMed ID: 27078486 [TBL] [Abstract][Full Text] [Related]
5. Quantum free-energy differences from nonequilibrium path integrals. I. Methods and numerical application. van Zon R; Hernández de la Peña L; Peslherbe GH; Schofield J Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 1):041103. PubMed ID: 18999375 [TBL] [Abstract][Full Text] [Related]
6. Noise limitations in solid state photodetectors. van Vliet KM Appl Opt; 1967 Jul; 6(7):1145-69. PubMed ID: 20062155 [TBL] [Abstract][Full Text] [Related]
7. Quantum work fluctuations in connection with the Jarzynski equality. Jaramillo JD; Deng J; Gong J Phys Rev E; 2017 Oct; 96(4-1):042119. PubMed ID: 29347528 [TBL] [Abstract][Full Text] [Related]
8. Calculating the free energy difference by applying the Jarzynski equality to a virtual integrable system. Zhu L; Wang J Phys Rev E; 2018 Aug; 98(2-1):022117. PubMed ID: 30253520 [TBL] [Abstract][Full Text] [Related]
9. Testing ground for fluctuation theorems: The one-dimensional Ising model. Lemos CGO; Santos M; Ferreira AL; Figueiredo W Phys Rev E; 2018 Apr; 97(4-1):042121. PubMed ID: 29758686 [TBL] [Abstract][Full Text] [Related]
10. Entropy-energy decomposition from nonequilibrium work trajectories. Nummela J; Yassin F; Andricioaei I J Chem Phys; 2008 Jan; 128(2):024104. PubMed ID: 18205440 [TBL] [Abstract][Full Text] [Related]
16. Polymer segregation under confinement: free energy calculations and segregation dynamics simulations. Polson JM; Montgomery LG J Chem Phys; 2014 Oct; 141(16):164902. PubMed ID: 25362336 [TBL] [Abstract][Full Text] [Related]
17. Fluctuation theorem with two independent field parameters: The one-dimensional compressible Ising model. Lemos CGO; Santos M; Ferreira AL; Figueiredo W Phys Rev E; 2019 Jan; 99(1-1):012129. PubMed ID: 30780247 [TBL] [Abstract][Full Text] [Related]
18. Nonequilibrium dynamics of random field Ising spin chains: exact results via real space renormalization group. Fisher DS; Le Doussal P; Monthus C Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Dec; 64(6 Pt 2):066107. PubMed ID: 11736236 [TBL] [Abstract][Full Text] [Related]
19. Efficient use of nonequilibrium measurement to estimate free energy differences for molecular systems. Ytreberg FM; Zuckerman DM J Comput Chem; 2004 Nov; 25(14):1749-59. PubMed ID: 15362132 [TBL] [Abstract][Full Text] [Related]
20. The properties of bio-energy transport and influence of structure nonuniformity and temperature of systems on energy transport along polypeptide chains. Pang XF Prog Biophys Mol Biol; 2012 Jan; 108(1-2):1-46. PubMed ID: 21951575 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]