These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 27841635)

  • 1. Stability of Cassie-Baxter wetting states on microstructured surfaces.
    Guo HY; Li B; Feng XQ
    Phys Rev E; 2016 Oct; 94(4-1):042801. PubMed ID: 27841635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamic analysis on wetting states and wetting state transitions of rough surfaces.
    Jiang Y; Lian J; Jiang Z; Li Y; Wen C
    Adv Colloid Interface Sci; 2020 Apr; 278():102136. PubMed ID: 32171897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical study of the effects of surface topography and chemistry on the wetting transition using the string method.
    Zhang Y; Ren W
    J Chem Phys; 2014 Dec; 141(24):244705. PubMed ID: 25554173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Line tension effects on the wetting of nanostructures: an energy method.
    Guo HY; Li B; Feng XQ
    Nanotechnology; 2017 Sep; 28(38):384001. PubMed ID: 28699624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How Surfactants Affect Droplet Wetting on Hydrophobic Microstructures.
    Shardt N; Bigdeli MB; Elliott JAW; Tsai PA
    J Phys Chem Lett; 2019 Dec; 10(23):7510-7515. PubMed ID: 31763845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of hydraulic pressure on the stability and transition of wetting modes of superhydrophobic surfaces.
    Zheng QS; Yu Y; Zhao ZH
    Langmuir; 2005 Dec; 21(26):12207-12. PubMed ID: 16342993
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability of virtual air walls on micropallet arrays.
    Wang Y; Bachman M; Sims CE; Li GP; Allbritton NL
    Anal Chem; 2007 Sep; 79(18):7104-9. PubMed ID: 17705452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of surface free energy at microstructured surface to investigate intermediate wetting state for partial wetting model.
    Yu Y; Zhang D; Nagayama G
    Soft Matter; 2023 Feb; 19(6):1249-1257. PubMed ID: 36722932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intermediate wetting state at nano/microstructured surfaces.
    Nagayama G; Zhang D
    Soft Matter; 2020 Apr; 16(14):3514-3521. PubMed ID: 32215385
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metastable wetting on superhydrophobic surfaces: continuum and atomistic views of the Cassie-Baxter-Wenzel transition.
    Giacomello A; Chinappi M; Meloni S; Casciola CM
    Phys Rev Lett; 2012 Nov; 109(22):226102. PubMed ID: 23368136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wetting Transition from the Cassie-Baxter State to the Wenzel State on Regularly Nanostructured Surfaces Induced by an Electric Field.
    Zhang BX; Wang SL; Wang XD
    Langmuir; 2019 Jan; 35(3):662-670. PubMed ID: 30601010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of a Cationic Surfactant on Droplet Wetting on Superhydrophobic Surfaces.
    Aldhaleai A; Tsai PA
    Langmuir; 2020 Apr; 36(16):4308-4316. PubMed ID: 32298121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wetting on fractal superhydrophobic surfaces from "core-shell" particles: a comparison of theory and experiment.
    Synytska A; Ionov L; Grundke K; Stamm M
    Langmuir; 2009 Mar; 25(5):3132-6. PubMed ID: 19437778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Symmetric and asymmetric meniscus collapse in wetting transition on submerged structured surfaces.
    Lv P; Xue Y; Liu H; Shi Y; Xi P; Lin H; Duan H
    Langmuir; 2015 Feb; 31(4):1248-54. PubMed ID: 25548941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Progress in understanding wetting transitions on rough surfaces.
    Bormashenko E
    Adv Colloid Interface Sci; 2015 Aug; 222():92-103. PubMed ID: 24594103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wetting transition on patterned surfaces: transition states and energy barriers.
    Ren W
    Langmuir; 2014 Mar; 30(10):2879-85. PubMed ID: 24564531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Range of applicability of the Wenzel and Cassie-Baxter equations for superhydrophobic surfaces.
    Erbil HY; Cansoy CE
    Langmuir; 2009 Dec; 25(24):14135-45. PubMed ID: 19630435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of Transparent and Microstructured Superhydrophobic Substrates Using Additive Manufacturing.
    Aldhaleai A; Tsai PA
    Langmuir; 2021 Jan; 37(1):348-356. PubMed ID: 33377783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fully reversible transition from Wenzel to Cassie-Baxter states on corrugated superhydrophobic surfaces.
    Vrancken RJ; Kusumaatmaja H; Hermans K; Prenen AM; Pierre-Louis O; Bastiaansen CW; Broer DJ
    Langmuir; 2010 Mar; 26(5):3335-41. PubMed ID: 19928892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gibbsian Thermodynamics of Cassie-Baxter Wetting (Were Cassie and Baxter Wrong? Revisited).
    Shardt N; Elliott JAW
    Langmuir; 2018 Oct; 34(40):12191-12198. PubMed ID: 30256650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.