These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 27841640)

  • 1. Extreme dissipation event due to plume collision in a turbulent convection cell.
    Schumacher J; Scheel JD
    Phys Rev E; 2016 Oct; 94(4-1):043104. PubMed ID: 27841640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of large-scale flow reversals in turbulent thermal convection.
    Wang Y; Lai PY; Song H; Tong P
    Sci Adv; 2018 Nov; 4(11):eaat7480. PubMed ID: 30474056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conditional statistics of thermal dissipation rate in turbulent Rayleigh-Bénard convection.
    Emran MS; Schumacher J
    Eur Phys J E Soft Matter; 2012 Oct; 35(10):108. PubMed ID: 23096154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measured thermal dissipation field in turbulent Rayleigh-Bénard convection.
    He X; Tong P; Xia KQ
    Phys Rev Lett; 2007 Apr; 98(14):144501. PubMed ID: 17501276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Confinement-induced heat-transport enhancement in turbulent thermal convection.
    Huang SD; Kaczorowski M; Ni R; Xia KQ
    Phys Rev Lett; 2013 Sep; 111(10):104501. PubMed ID: 25166672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurements of the thermal dissipation field in turbulent Rayleigh-Bénard convection.
    He X; Tong P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 2):026306. PubMed ID: 19391839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Logarithmic Mean Temperature Profiles and Their Connection to Plume Emissions in Turbulent Rayleigh-Bénard Convection.
    van der Poel EP; Ostilla-Mónico R; Verzicco R; Grossmann S; Lohse D
    Phys Rev Lett; 2015 Oct; 115(15):154501. PubMed ID: 26550725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of large-scale coherent structures on turbulent convection.
    Bukai M; Eidelman A; Elperin T; Kleeorin N; Rogachevskii I; Sapir-Katiraie I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 2):066302. PubMed ID: 19658589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plumes and waves in two-dimensional turbulent thermal convection.
    Vincent AP; Yuen DA
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Sep; 60(3):2957-63. PubMed ID: 11970101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Statistics of Heat Transfer in Two-Dimensional Turbulent Rayleigh-Bénard Convection at Various Prandtl Number.
    Yang H; Wei Y; Zhu Z; Dou H; Qian Y
    Entropy (Basel); 2018 Aug; 20(8):. PubMed ID: 33265671
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time Evolution Features of Entropy Generation Rate in Turbulent Rayleigh-Bénard Convection with Mixed Insulating and Conducting Boundary Conditions.
    Wei Y; Shen P; Wang Z; Liang H; Qian Y
    Entropy (Basel); 2020 Jun; 22(6):. PubMed ID: 33286444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Universality of local dissipation scales in buoyancy-driven turbulence.
    Zhou Q; Xia KQ
    Phys Rev Lett; 2010 Mar; 104(12):124301. PubMed ID: 20366537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Statistics of velocity and temperature fluctuations in two-dimensional Rayleigh-Bénard convection.
    Zhang Y; Huang YX; Jiang N; Liu YL; Lu ZM; Qiu X; Zhou Q
    Phys Rev E; 2017 Aug; 96(2-1):023105. PubMed ID: 28950509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clustering of plumes in turbulent convection.
    Parodi A; von Hardenberg J; Passoni G; Provenzale A; Spiegel EA
    Phys Rev Lett; 2004 May; 92(19):194503. PubMed ID: 15169409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Turbulent Convection Insights from Small-Scale Thermal Forcing with Zero Net Heat Flux at a Horizontal Boundary.
    Griffiths RW; Gayen B
    Phys Rev Lett; 2015 Nov; 115(20):204301. PubMed ID: 26613443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plume fragmentation by bulk interactions in turbulent Rayleigh-Bénard convection.
    Bosbach J; Weiss S; Ahlers G
    Phys Rev Lett; 2012 Feb; 108(5):054501. PubMed ID: 22400934
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultimate-state scaling in a shell model for homogeneous turbulent convection.
    Ching ES; Ko TC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 2):036309. PubMed ID: 18851145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of large-scale semiorganized structures in turbulent convection.
    Elperin T; Kleeorin N; Rogachevskii I; Zilitinkevich S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Dec; 66(6 Pt 2):066305. PubMed ID: 12513400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Turbulent boundary layer in high Rayleigh number convection in air.
    du Puits R; Li L; Resagk C; Thess A; Willert C
    Phys Rev Lett; 2014 Mar; 112(12):124301. PubMed ID: 24724653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large-scale velocity structures in turbulent thermal convection.
    Qiu XL; Tong P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Sep; 64(3 Pt 2):036304. PubMed ID: 11580444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.