These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 27841700)

  • 1. Force model for laparoscopic graspers: implications for virtual simulator design.
    Susmitha Wils K; Devasahayam SR; Manivannan M; Mathew G
    Minim Invasive Ther Allied Technol; 2017 Apr; 26(2):97-103. PubMed ID: 27841700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Factors influencing forces during laparoscopic pinching: Towards the design of virtual simulator.
    Susmitha WK; Mathew G; Devasahayam SR; Perakath B; Velusamy SK
    Int J Surg; 2015 Jun; 18():211-5. PubMed ID: 25937156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of laparoscopic graspers with enhanced haptic feedback on applied forces: a randomized comparison with conventional graspers.
    Alleblas CCJ; Vleugels MPH; Coppus SFPJ; Nieboer TE
    Surg Endosc; 2017 Dec; 31(12):5411-5417. PubMed ID: 28593415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of laparoscopic grasper force transmission ratio on grasp control.
    Westebring-van der Putten EP; van den Dobbelsteen JJ; Goossens RH; Jakimowicz JJ; Dankelman J
    Surg Endosc; 2009 Apr; 23(4):818-24. PubMed ID: 18814010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance of a Haptic Feedback Grasper in Laparoscopic Surgery: A Randomized Pilot Comparison With Conventional Graspers in a Porcine Model.
    Alleblas CCJ; Vleugels MPH; Stommel MWJ; Nieboer TE
    Surg Innov; 2019 Oct; 26(5):573-580. PubMed ID: 31161876
    [No Abstract]   [Full Text] [Related]  

  • 6. Design and Evaluation of a Balanced Compliant Laparoscopic Grasper.
    Klok JW; Postema R; Steinporsson AT; Dankelman J; Horeman T
    IEEE J Transl Eng Health Med; 2023; 11():451-459. PubMed ID: 37817822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Output force and ratio of laparoscopic graspers: an evaluation of operating room ergonomics.
    Olig EM; Wilson S; Reddy M
    Am J Obstet Gynecol; 2023 Sep; 229(3):307.e1-307.e9. PubMed ID: 37201694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Objective Assessment of Laparoscopic Force and Psychomotor Skills in a Novel Virtual Reality-Based Haptic Simulator.
    Prasad MS; Manivannan M; Manoharan G; Chandramohan SM
    J Surg Educ; 2016; 73(5):858-69. PubMed ID: 27267563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Force-adjustable parallel-occlusion grasper.
    Khan H; Coleman S; Cuschieri A
    Int J Surg; 2024 Feb; 110(2):750-757. PubMed ID: 37995091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Output control of da Vinci surgical system's surgical graspers.
    Johnson PJ; Schmidt DE; Duvvuri U
    J Surg Res; 2014 Jan; 186(1):56-62. PubMed ID: 23968806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Objective laparoscopic skills assessments of surgical residents using Hidden Markov Models based on haptic information and tool/tissue interactions.
    Rosen J; Solazzo M; Hannaford B; Sinanan M
    Stud Health Technol Inform; 2001; 81():417-23. PubMed ID: 11317782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High pressures are generated at the tip of laparoscopic graspers.
    Cartmill JA; Shakeshaft AJ; Walsh WR; Martin CJ
    Aust N Z J Surg; 1999 Feb; 69(2):127-30. PubMed ID: 10030813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and validation of a surgical training simulator with haptic feedback for learning bone-sawing skill.
    Lin Y; Wang X; Wu F; Chen X; Wang C; Shen G
    J Biomed Inform; 2014 Apr; 48():122-9. PubMed ID: 24380817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bimanual haptic workstation for laparoscopic surgery simulation.
    Devarajan V; Scott D; Jones D; Rege R; Eberhart R; Lindahl C; Tanguy P; Fernandez R
    Stud Health Technol Inform; 2001; 81():126-8. PubMed ID: 11317725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-session baseline virtual reality simulator scores predict technical performance for laparoscopic colectomy: a study in the swine model.
    Araujo SE; Seid VE; Bertoncini AB; Horcel LA; Nahas SC; Cecconello I
    J Surg Educ; 2014; 71(6):883-91. PubMed ID: 24994032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Augmented versus virtual reality laparoscopic simulation: what is the difference? A comparison of the ProMIS augmented reality laparoscopic simulator versus LapSim virtual reality laparoscopic simulator.
    Botden SM; Buzink SN; Schijven MP; Jakimowicz JJ
    World J Surg; 2007 Apr; 31(4):764-72. PubMed ID: 17361356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How Safe Are the Laparoscopic and Robotic Graspers? Evaluation of the Novel Avatera Robotic Surgical System: An Acute In Vivo Study on a Porcine Model.
    Tatanis V; Natsos A; Tsaturyan A; Vagionis A; Peteinaris A; Faitatziadis S; Gkeka K; Pagonis K; Obaidat M; Anaplioti E; Koumoundourou D; Bravou V; Vrettos T; Kallidonis P; Liatsikos E
    Urol Res Pract; 2023 Nov; 49(6):387-391. PubMed ID: 37971390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Haptic rendering for VR laparoscopic surgery simulation.
    McColl R; Brown I; Seligman C; Lim F; Alsaraira A
    Australas Phys Eng Sci Med; 2006 Mar; 29(1):73-8. PubMed ID: 16623225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of haptic feedback in laparoscopic simulation training.
    Panait L; Akkary E; Bell RL; Roberts KE; Dudrick SJ; Duffy AJ
    J Surg Res; 2009 Oct; 156(2):312-6. PubMed ID: 19631336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Markov modeling of minimally invasive surgery based on tool/tissue interaction and force/torque signatures for evaluating surgical skills.
    Rosen J; Hannaford B; Richards CG; Sinanan MN
    IEEE Trans Biomed Eng; 2001 May; 48(5):579-91. PubMed ID: 11341532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.