BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 27841893)

  • 1. Porous CuO nanotubes/graphene with sandwich architecture as high-performance anodes for lithium-ion batteries.
    Xiao S; Pan D; Wang L; Zhang Z; Lyu Z; Dong W; Chen X; Zhang D; Chen W; Li H
    Nanoscale; 2016 Nov; 8(46):19343-19351. PubMed ID: 27841893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of Advanced CuO Nanowires/Functionalized Graphene Composite Anode Material for Lithium Ion Batteries.
    Zhang J; Wang B; Zhou J; Xia R; Chu Y; Huang J
    Materials (Basel); 2017 Jan; 10(1):. PubMed ID: 28772432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facile synthesis of novel tunable highly porous CuO nanorods for high rate lithium battery anodes with realized long cycle life and high reversible capacity.
    Wang L; Gong H; Wang C; Wang D; Tang K; Qian Y
    Nanoscale; 2012 Nov; 4(21):6850-5. PubMed ID: 23034730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hierarchical Sandwich-Like Structure of Ultrafine N-Rich Porous Carbon Nanospheres Grown on Graphene Sheets as Superior Lithium-Ion Battery Anodes.
    Xie Z; He Z; Feng X; Xu W; Cui X; Zhang J; Yan C; Carreon MA; Liu Z; Wang Y
    ACS Appl Mater Interfaces; 2016 Apr; 8(16):10324-33. PubMed ID: 27071473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mechanistic exploration of porous activated graphene sheets-anchored SnO2 nanocrystals for application in high-performance Li-ion battery anodes.
    Yang Y; Ji X; Lu F; Chen Q; Banks CE
    Phys Chem Chem Phys; 2013 Sep; 15(36):15098-105. PubMed ID: 23925441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Single-Step Hydrothermal Route to 3D Hierarchical Cu
    Wu S; Fu G; Lv W; Wei J; Chen W; Yi H; Gu M; Bai X; Zhu L; Tan C; Liang Y; Zhu G; He J; Wang X; Zhang KHL; Xiong J; He W
    Small; 2018 Feb; 14(5):. PubMed ID: 29226523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Yucca fern shaped CuO nanowires on Cu foam for remitting capacity fading of Li-ion battery anodes.
    Wang Z; Zhang Y; Xiong H; Qin C; Zhao W; Liu X
    Sci Rep; 2018 Apr; 8(1):6530. PubMed ID: 29695815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. General Strategy for Fabricating Sandwich-like Graphene-Based Hybrid Films for Highly Reversible Lithium Storage.
    Zhong X; Yang Z; Liu X; Wang J; Gu L; Yu Y
    ACS Appl Mater Interfaces; 2015 Aug; 7(33):18320-6. PubMed ID: 26259036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A New Anode for Lithium-Ion Batteries Based on Single-Walled Carbon Nanotubes and Graphene: Improved Performance through a Binary Network Design.
    Ren J; Ren RP; Lv YK
    Chem Asian J; 2018 May; 13(9):1223-1227. PubMed ID: 29524325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Porous CuO@C composite as high-performance anode materials for lithium-ion batteries.
    Xu Y; Chu K; Li Z; Xu S; Yao G; Niu P; Zheng F
    Dalton Trans; 2020 Aug; 49(33):11597-11604. PubMed ID: 32776067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Porous CuO/reduced graphene oxide composites synthesized from metal-organic frameworks as anodes for high-performance sodium-ion batteries.
    Li D; Yan D; Zhang X; Li J; Lu T; Pan L
    J Colloid Interface Sci; 2017 Jul; 497():350-358. PubMed ID: 28301830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flexible hierarchical membranes of WS
    Zhang L; Fan W; Liu T
    Nanoscale; 2016 Sep; 8(36):16387-16394. PubMed ID: 27714049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Confined Porous Graphene/SnOx Frameworks within Polyaniline-Derived Carbon as Highly Stable Lithium-Ion Battery Anodes.
    Zhou D; Song WL; Li X; Fan LZ
    ACS Appl Mater Interfaces; 2016 Jun; 8(21):13410-7. PubMed ID: 27169479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D interconnected porous carbon nanosheets/carbon nanotubes as a polysulfide reservoir for high performance lithium-sulfur batteries.
    Yang W; Yang W; Song A; Sun G; Shao G
    Nanoscale; 2018 Jan; 10(2):816-824. PubMed ID: 29260832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly Efficient High-Pressure Homogenization Approach for Scalable Production of High-Quality Graphene Sheets and Sandwich-Structured α-Fe
    Qi X; Zhang HB; Xu J; Wu X; Yang D; Qu J; Yu ZZ
    ACS Appl Mater Interfaces; 2017 Mar; 9(12):11025-11034. PubMed ID: 28263549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monolayer MoS2-Graphene Hybrid Aerogels with Controllable Porosity for Lithium-Ion Batteries with High Reversible Capacity.
    Jiang L; Lin B; Li X; Song X; Xia H; Li L; Zeng H
    ACS Appl Mater Interfaces; 2016 Feb; 8(4):2680-7. PubMed ID: 26761564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-Step Catalytic Synthesis of CuO/Cu2O in a Graphitized Porous C Matrix Derived from the Cu-Based Metal-Organic Framework for Li- and Na-Ion Batteries.
    Kim AY; Kim MK; Cho K; Woo JY; Lee Y; Han SH; Byun D; Choi W; Lee JK
    ACS Appl Mater Interfaces; 2016 Aug; 8(30):19514-23. PubMed ID: 27398693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flexible CuO nanosheets/reduced-graphene oxide composite paper: binder-free anode for high-performance lithium-ion batteries.
    Liu Y; Wang W; Gu L; Wang Y; Ying Y; Mao Y; Sun L; Peng X
    ACS Appl Mater Interfaces; 2013 Oct; 5(19):9850-5. PubMed ID: 24010720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon nanotubes grown in situ on graphene nanosheets as superior anodes for Li-ion batteries.
    Chen S; Chen P; Wang Y
    Nanoscale; 2011 Oct; 3(10):4323-9. PubMed ID: 21879120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graphene/carbon-coated Si nanoparticle hybrids as high-performance anode materials for Li-ion batteries.
    Zhou M; Cai T; Pu F; Chen H; Wang Z; Zhang H; Guan S
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):3449-55. PubMed ID: 23527898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.