These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 27842073)

  • 21. Effect of Surface Anions Adsorbed by Rutile TiO
    Jiang X; Gao M; Li H
    Molecules; 2024 Sep; 29(19):. PubMed ID: 39407496
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Single Molecule Photocatalysis on TiO
    Guo Q; Ma Z; Zhou C; Ren Z; Yang X
    Chem Rev; 2019 Oct; 119(20):11020-11041. PubMed ID: 31503466
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of aspect ratios of rutile TiO
    Fu B; Wu Z; Cao S; Guo K; Piao L
    Nanoscale; 2020 Feb; 12(8):4895-4902. PubMed ID: 32053128
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Water Dissociates at the Aqueous Interface with Reduced Anatase TiO
    Nadeem IM; Treacy JPW; Selcuk S; Torrelles X; Hussain H; Wilson A; Grinter DC; Cabailh G; Bikondoa O; Nicklin C; Selloni A; Zegenhagen J; Lindsay R; Thornton G
    J Phys Chem Lett; 2018 Jun; 9(11):3131-3136. PubMed ID: 29768922
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In situ scanning tunneling microscopy study of Ca-modified rutile TiO2(110) in bulk water.
    Serrano G; Bonanni B; Kosmala T; Di Giovannantonio M; Diebold U; Wandelt K; Goletti C
    Beilstein J Nanotechnol; 2015; 6():438-43. PubMed ID: 25821684
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Surface protonation at the rutile (110) interface: explicit incorporation of solvation structure within the refined MUSIC model framework.
    Machesky ML; Predota M; Wesolowski DJ; Vlcek L; Cummings PT; Rosenqvist J; Ridley MK; Kubicki JD; Bandura AV; Kumar N; Sofo JO
    Langmuir; 2008 Nov; 24(21):12331-9. PubMed ID: 18842061
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular mechanisms of photoinduced oxygen evolution, PL emission, and surface roughening at atomically smooth (110) and (100) n-TiO2 (rutile) surfaces in aqueous acidic solutions.
    Nakamura R; Okamura T; Ohashi N; Imanishi A; Nakato Y
    J Am Chem Soc; 2005 Sep; 127(37):12975-83. PubMed ID: 16159292
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tuning Phase Composition of TiO2 by Sn(4+) Doping for Efficient Photocatalytic Hydrogen Generation.
    Wang F; Ho JH; Jiang Y; Amal R
    ACS Appl Mater Interfaces; 2015 Nov; 7(43):23941-8. PubMed ID: 26444102
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Adsorption and reactions of O2 on anatase TiO2.
    Li YF; Aschauer U; Chen J; Selloni A
    Acc Chem Res; 2014 Nov; 47(11):3361-8. PubMed ID: 24742024
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Preparation and characterization of TiO2/acid leached serpentinite tailings composites and their photocatalytic reduction of chromium(VI).
    Sun Z; Zheng L; Zheng S; Frost RL
    J Colloid Interface Sci; 2013 Aug; 404():102-9. PubMed ID: 23711657
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adsorption of R-OH molecules on TiO2 surfaces at the solid-liquid interface.
    Sánchez VM; de la Llave E; Scherlis DA
    Langmuir; 2011 Mar; 27(6):2411-9. PubMed ID: 21314168
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structure, Polarization, and Sum Frequency Generation Spectrum of Interfacial Water on Anatase TiO
    Calegari Andrade MF; Ko HY; Car R; Selloni A
    J Phys Chem Lett; 2018 Dec; 9(23):6716-6721. PubMed ID: 30388372
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mixed phase lamellar titania-titanate anchored with Ag2O and polypyrrole for enhanced adsorption and photocatalytic activity.
    Kumar R
    J Colloid Interface Sci; 2016 Sep; 477():83-93. PubMed ID: 27244593
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Unraveling the atomic structure and dissociation of interfacial water on anatase TiO
    Yang L; Huang M; Feng N; Wang M; Xu J; Jiang Y; Ma D; Deng F
    Chem Sci; 2024 Jul; 15(30):11902-11911. PubMed ID: 39092109
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of ZnFe2O4 doping on the photocatalytic activity of TiO2.
    Liu GG; Zhang XZ; Xu YJ; Niu XS; Zheng LQ; Ding XJ
    Chemosphere; 2004 Jun; 55(9):1287-91. PubMed ID: 15081770
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure and reactivity of highly reduced titanium oxide surface layers on TiO
    Wen B; Liu LM; Selloni A
    J Chem Phys; 2019 Nov; 151(18):184701. PubMed ID: 31731841
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydrogen-Bond Network Promotes Water Splitting on the TiO
    Ma X; Shi Y; Liu J; Li X; Cui X; Tan S; Zhao J; Wang B
    J Am Chem Soc; 2022 Aug; 144(30):13565-13573. PubMed ID: 35852138
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Heterostructured TiO2 Nanorod@Nanobowl Arrays for Efficient Photoelectrochemical Water Splitting.
    Wang W; Dong J; Ye X; Li Y; Ma Y; Qi L
    Small; 2016 Mar; 12(11):1469-78. PubMed ID: 26779803
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Positive and Negative Impacts of Interfacial Hydrogen Bonds on Photocatalytic Hydrogen Evolution.
    Lin Z; Saito H; Sato H; Sugimoto T
    J Am Chem Soc; 2024 Aug; 146(32):22276-22283. PubMed ID: 38968321
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhanced Photoelectrochemical Performance from Rationally Designed Anatase/Rutile TiO2 Heterostructures.
    Cao F; Xiong J; Wu F; Liu Q; Shi Z; Yu Y; Wang X; Li L
    ACS Appl Mater Interfaces; 2016 May; 8(19):12239-45. PubMed ID: 27136708
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.