These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 27842254)
1. Transferrin-inspired vehicles based on pH-responsive coordination bond to combat multidrug-resistant breast cancer. He YJ; Xing L; Cui PF; Zhang JL; Zhu Y; Qiao JB; Lyu JY; Zhang M; Luo CQ; Zhou YX; Lu N; Jiang HL Biomaterials; 2017 Jan; 113():266-278. PubMed ID: 27842254 [TBL] [Abstract][Full Text] [Related]
2. Nanoparticle-directed sub-cellular localization of doxorubicin and the sensitization breast cancer cells by circumventing GST-mediated drug resistance. Zeng X; Morgenstern R; Nyström AM Biomaterials; 2014 Jan; 35(4):1227-39. PubMed ID: 24210875 [TBL] [Abstract][Full Text] [Related]
3. Enhanced effect of pH-sensitive mixed copolymer micelles for overcoming multidrug resistance of doxorubicin. Qiu L; Qiao M; Chen Q; Tian C; Long M; Wang M; Li Z; Hu W; Li G; Cheng L; Cheng L; Hu H; Zhao X; Chen D Biomaterials; 2014 Dec; 35(37):9877-9887. PubMed ID: 25201738 [TBL] [Abstract][Full Text] [Related]
4. pH and redox dual-responsive nanoparticles based on disulfide-containing poly(β-amino ester) for combining chemotherapy and COX-2 inhibitor to overcome drug resistance in breast cancer. Zhang S; Guo N; Wan G; Zhang T; Li C; Wang Y; Wang Y; Liu Y J Nanobiotechnology; 2019 Oct; 17(1):109. PubMed ID: 31623608 [TBL] [Abstract][Full Text] [Related]
5. Multifunctional PLGA nanoparticles combining transferrin-targetability and pH-stimuli sensitivity enhanced doxorubicin intracellular delivery and in vitro antineoplastic activity in MDR tumor cells. Scheeren LE; Nogueira-Librelotto DR; Mathes D; Pillat MM; Macedo LB; Mitjans M; Vinardell MP; Rolim CMB Toxicol In Vitro; 2021 Sep; 75():105192. PubMed ID: 33984456 [TBL] [Abstract][Full Text] [Related]
6. Co-delivery of doxorubicin and pH-sensitive curcumin prodrug by transferrin-targeted nanoparticles for breast cancer treatment. Cui T; Zhang S; Sun H Oncol Rep; 2017 Feb; 37(2):1253-1260. PubMed ID: 28075466 [TBL] [Abstract][Full Text] [Related]
7. Reduction/photo dual-responsive polymeric prodrug nanoparticles for programmed siRNA and doxorubicin delivery. Wu M; Li J; Lin X; Wei Z; Zhang D; Zhao B; Liu X; Liu J Biomater Sci; 2018 May; 6(6):1457-1468. PubMed ID: 29770812 [TBL] [Abstract][Full Text] [Related]
8. Multifunctional aptamer-based nanoparticles for targeted drug delivery to circumvent cancer resistance. Liu J; Wei T; Zhao J; Huang Y; Deng H; Kumar A; Wang C; Liang Z; Ma X; Liang XJ Biomaterials; 2016 Jun; 91():44-56. PubMed ID: 26994877 [TBL] [Abstract][Full Text] [Related]
9. Dual-responsive mPEG-PLGA-PGlu hybrid-core nanoparticles with a high drug loading to reverse the multidrug resistance of breast cancer: an in vitro and in vivo evaluation. Xu H; Yang D; Cai C; Gou J; Zhang Y; Wang L; Zhong H; Tang X Acta Biomater; 2015 Apr; 16():156-68. PubMed ID: 25662165 [TBL] [Abstract][Full Text] [Related]
10. Low-molecular-weight protamine-modified PLGA nanoparticles for overcoming drug-resistant breast cancer. Wang H; Zhao Y; Wang H; Gong J; He H; Shin MC; Yang VC; Huang Y J Control Release; 2014 Oct; 192():47-56. PubMed ID: 25003794 [TBL] [Abstract][Full Text] [Related]
11. pH-sensitive pullulan-based nanoparticle carrier for adriamycin to overcome drug-resistance of cancer cells. Guo H; Liu Y; Wang Y; Wu J; Yang X; Li R; Wang Y; Zhang N Carbohydr Polym; 2014 Oct; 111():908-17. PubMed ID: 25037431 [TBL] [Abstract][Full Text] [Related]
12. Mussel-Inspired Protein Nanoparticles Containing Iron(III)-DOPA Complexes for pH-Responsive Drug Delivery. Kim BJ; Cheong H; Hwang BH; Cha HJ Angew Chem Int Ed Engl; 2015 Jun; 54(25):7318-22. PubMed ID: 25968933 [TBL] [Abstract][Full Text] [Related]
13. Engineered bovine serum albumin-based nanoparticles with pH-sensitivity for doxorubicin delivery and controlled release. Yang Z; Zhang N; Ma T; Liu L; Zhao L; Xie H Drug Deliv; 2020 Dec; 27(1):1156-1164. PubMed ID: 32755291 [TBL] [Abstract][Full Text] [Related]
14. Multifunctional envelope-type mesoporous silica nanoparticles for pH-responsive drug delivery and magnetic resonance imaging. Chen Y; Ai K; Liu J; Sun G; Yin Q; Lu L Biomaterials; 2015 Aug; 60():111-20. PubMed ID: 25988726 [TBL] [Abstract][Full Text] [Related]
15. Comparative studies of polyethylenimine-doxorubicin conjugates with pH-sensitive and pH-insensitive linkers. Dong DW; Tong SW; Qi XR J Biomed Mater Res A; 2013 May; 101(5):1336-44. PubMed ID: 23065848 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of doxorubicin-loaded pH-sensitive polymeric micelle release from tumor blood vessels and anticancer efficacy using a dorsal skin-fold window chamber model. Jin ZH; Jin MJ; Jiang CG; Yin XZ; Jin SX; Quan XQ; Gao ZG Acta Pharmacol Sin; 2014 Jun; 35(6):839-45. PubMed ID: 24902790 [TBL] [Abstract][Full Text] [Related]
17. NIR-/pH-Responsive drug delivery of functionalized single-walled carbon nanotubes for potential application in cancer chemo-photothermal therapy. Wang L; Shi J; Jia X; Liu R; Wang H; Wang Z; Li L; Zhang J; Zhang C; Zhang Z Pharm Res; 2013 Nov; 30(11):2757-71. PubMed ID: 23765399 [TBL] [Abstract][Full Text] [Related]
18. Design of tumor-homing and pH-responsive polypeptide-doxorubicin nanoparticles with enhanced anticancer efficacy and reduced side effects. Hu J; Xie L; Zhao W; Sun M; Liu X; Gao W Chem Commun (Camb); 2015 Jul; 51(57):11405-8. PubMed ID: 26086450 [TBL] [Abstract][Full Text] [Related]
19. A pH-responsive mesoporous silica nanoparticles-based multi-drug delivery system for overcoming multi-drug resistance. He Q; Gao Y; Zhang L; Zhang Z; Gao F; Ji X; Li Y; Shi J Biomaterials; 2011 Oct; 32(30):7711-20. PubMed ID: 21816467 [TBL] [Abstract][Full Text] [Related]
20. Dual-targeting and pH/redox-responsive multi-layered nanocomplexes for smart co-delivery of doxorubicin and siRNA. Han L; Tang C; Yin C Biomaterials; 2015 Aug; 60():42-52. PubMed ID: 25982552 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]