These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 27842266)

  • 1. Synthesis and characterization of hybrid iron oxide silicates for selective removal of arsenic oxyanions from contaminated water.
    El-Moselhy MM; Ates A; Çelebi A
    J Colloid Interface Sci; 2017 Feb; 488():335-347. PubMed ID: 27842266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced Arsenite Removal from Silicate-containing Water by Using Redox Polymer-based Fe(III) Oxides Nanocomposite.
    Fang Z; Li Z; Zhang X; Pan S; Wu M; Pan B
    Water Res; 2021 Feb; 189():116673. PubMed ID: 33276212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of a novel hybrid inorganic/organic polymer type material in the arsenic removal process from drinking water.
    Iesan CM; Capat C; Ruta F; Udrea I
    Water Res; 2008 Oct; 42(16):4327-33. PubMed ID: 18778845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced arsenic sorption by hydrated iron (III) oxide-coated materials--mechanism and performances.
    Jovanović BM; Vukasinović-Pesić VL; Rajaković LV
    Water Environ Res; 2011 Jun; 83(6):498-506. PubMed ID: 21751708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A method for preparing silica-containing iron(III) oxide adsorbents for arsenic removal.
    Zeng L
    Water Res; 2003 Nov; 37(18):4351-8. PubMed ID: 14511705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanostructured iron(III)-copper(II) binary oxide: a novel adsorbent for enhanced arsenic removal from aqueous solutions.
    Zhang G; Ren Z; Zhang X; Chen J
    Water Res; 2013 Aug; 47(12):4022-31. PubMed ID: 23571113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sugarcane bagasse treated with hydrous ferric oxide as a potential adsorbent for the removal of As(V) from aqueous solutions.
    Pehlivan E; Tran HT; Ouédraogo WK; Schmidt C; Zachmann D; Bahadir M
    Food Chem; 2013 May; 138(1):133-8. PubMed ID: 23265467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorptive selenite removal from water using a nano-hydrated ferric oxides (HFOs)/polymer hybrid adsorbent.
    Pan B; Xiao L; Nie G; Pan B; Wu J; Lv L; Zhang W; Zheng S
    J Environ Monit; 2010 Jan; 12(1):305-10. PubMed ID: 20082026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidation and removal of arsenic (III) from aerated groundwater by filtration through sand and zero-valent iron.
    Leupin OX; Hug SJ
    Water Res; 2005 May; 39(9):1729-40. PubMed ID: 15899271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arsenic removal using hydrous nanostructure iron(III)-titanium(IV) binary mixed oxide from aqueous solution.
    Gupta K; Ghosh UC
    J Hazard Mater; 2009 Jan; 161(2-3):884-92. PubMed ID: 18502578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and evaluation of iron-chitosan composites for removal of As(III) and As(V) from arsenic contaminated real life groundwater.
    Gupta A; Chauhan VS; Sankararamakrishnan N
    Water Res; 2009 Aug; 43(15):3862-70. PubMed ID: 19577786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antimony(V) removal from water by hydrated ferric oxides supported by calcite sand and polymeric anion exchanger.
    Miao Y; Han F; Pan B; Niu Y; Nie G; Lv L
    J Environ Sci (China); 2014 Feb; 26(2):307-14. PubMed ID: 25076522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of sulfate on Cu(II) sorption to polymer-supported nano-iron oxides: behavior and XPS study.
    Qiu H; Zhang S; Pan B; Zhang W; Lv L
    J Colloid Interface Sci; 2012 Jan; 366(1):37-43. PubMed ID: 22014398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reactive transport modeling of subsurface arsenic removal systems in rural Bangladesh.
    Rahman MM; Bakker M; Patty CH; Hassan Z; Röling WF; Ahmed KM; van Breukelen BM
    Sci Total Environ; 2015 Dec; 537():277-93. PubMed ID: 26282762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly efficient removal of heavy metals by polymer-supported nanosized hydrated Fe(III) oxides: behavior and XPS study.
    Pan B; Qiu H; Pan B; Nie G; Xiao L; Lv L; Zhang W; Zhang Q; Zheng S
    Water Res; 2010 Feb; 44(3):815-24. PubMed ID: 19906397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Desorption of arsenic from clay and humic acid-coated clay by dissolved phosphate and silicate.
    Sharma P; Kappler A
    J Contam Hydrol; 2011 Nov; 126(3-4):216-25. PubMed ID: 22115087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and evaluation of a novel Fe-Mn binary oxide adsorbent for effective arsenite removal.
    Zhang G; Qu J; Liu H; Liu R; Wu R
    Water Res; 2007 May; 41(9):1921-8. PubMed ID: 17382991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of groundwater composition on uranium(VI) sorption onto bacteriogenic iron oxides.
    Katsoyiannis IA; Althoff HW; Bartel H; Jekel M
    Water Res; 2006 Nov; 40(19):3646-52. PubMed ID: 16908045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of polymer-based nanosized hydrated ferric oxides (HFOs) for enhanced phosphate removal from waste effluents.
    Pan B; Wu J; Pan B; Lv L; Zhang W; Xiao L; Wang X; Tao X; Zheng S
    Water Res; 2009 Sep; 43(17):4421-9. PubMed ID: 19615711
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Iron(III) modification of Bacillus subtilis membranes provides record sorption capacity for arsenic and endows unusual selectivity for As(V).
    Yang T; Chen ML; Liu LH; Wang JH; Dasgupta PK
    Environ Sci Technol; 2012 Feb; 46(4):2251-6. PubMed ID: 22296291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.