These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

986 related articles for article (PubMed ID: 27842494)

  • 61. Shiny-SoSV: A web-based performance calculator for somatic structural variant detection.
    Gong T; Hayes VM; Chan EKF
    PLoS One; 2020; 15(8):e0238108. PubMed ID: 32853264
    [TBL] [Abstract][Full Text] [Related]  

  • 62. QQ-SNV: single nucleotide variant detection at low frequency by comparing the quality quantiles.
    Van der Borght K; Thys K; Wetzels Y; Clement L; Verbist B; Reumers J; van Vlijmen H; Aerssens J
    BMC Bioinformatics; 2015 Nov; 16():379. PubMed ID: 26554718
    [TBL] [Abstract][Full Text] [Related]  

  • 63. An integrative variant analysis suite for whole exome next-generation sequencing data.
    Challis D; Yu J; Evani US; Jackson AR; Paithankar S; Coarfa C; Milosavljevic A; Gibbs RA; Yu F
    BMC Bioinformatics; 2012 Jan; 13():8. PubMed ID: 22239737
    [TBL] [Abstract][Full Text] [Related]  

  • 64. AMLVaran: a software approach to implement variant analysis of targeted NGS sequencing data in an oncological care setting.
    Wünsch C; Banck H; Müller-Tidow C; Dugas M
    BMC Med Genomics; 2020 Feb; 13(1):17. PubMed ID: 32019565
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Challenges in exome analysis by LifeScope and its alternative computational pipelines.
    Pranckevičiene E; Rančelis T; Pranculis A; Kučinskas V
    BMC Res Notes; 2015 Sep; 8():421. PubMed ID: 26346699
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Construction of a combinatorial pipeline using two somatic variant  calling  methods  for whole exome sequence data of gastric cancer.
    Kohmoto T; Masuda K; Naruto T; Tange S; Shoda K; Hamada J; Saito M; Ichikawa D; Tajima A; Otsuji E; Imoto I
    J Med Invest; 2017; 64(3.4):233-240. PubMed ID: 28954988
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Intersect-then-combine approach: improving the performance of somatic variant calling in whole exome sequencing data using multiple aligners and callers.
    Callari M; Sammut SJ; De Mattos-Arruda L; Bruna A; Rueda OM; Chin SF; Caldas C
    Genome Med; 2017 Apr; 9(1):35. PubMed ID: 28420412
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A community-based resource for automatic exome variant-calling and annotation in Mendelian disorders.
    Mutarelli M; Marwah V; Rispoli R; Carrella D; Dharmalingam G; Oliva G; di Bernardo D
    BMC Genomics; 2014; 15 Suppl 3(Suppl 3):S5. PubMed ID: 25078076
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Analysis of machine learning algorithms as integrative tools for validation of next generation sequencing data.
    Marceddu G; Dallavilla T; Guerri G; Zulian A; Marinelli C; Bertelli M
    Eur Rev Med Pharmacol Sci; 2019 Sep; 23(18):8139-8147. PubMed ID: 31599443
    [TBL] [Abstract][Full Text] [Related]  

  • 70. SomaticSeq: An Ensemble and Machine Learning Method to Detect Somatic Mutations.
    Fang LT
    Methods Mol Biol; 2020; 2120():47-70. PubMed ID: 32124311
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Strategies for identification of somatic variants using the Ion Torrent deep targeted sequencing platform.
    Deshpande A; Lang W; McDowell T; Sivakumar S; Zhang J; Wang J; San Lucas FA; Fowler J; Kadara H; Scheet P
    BMC Bioinformatics; 2018 Jan; 19(1):5. PubMed ID: 29301485
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A study on fast calling variants from next-generation sequencing data using decision tree.
    Li Z; Wang Y; Wang F
    BMC Bioinformatics; 2018 Apr; 19(1):145. PubMed ID: 29673316
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Integrated next-generation sequencing analysis of whole exome and 409 cancer-related genes.
    Shimoda Y; Nagashima T; Urakami K; Tanabe T; Saito J; Naruoka A; Serizawa M; Mochizuki T; Ohshima K; Ohnami S; Ohnami S; Kusuhara M; Yamaguchi K
    Biomed Res; 2016; 37(6):367-379. PubMed ID: 28003584
    [TBL] [Abstract][Full Text] [Related]  

  • 74. ClinPred: Prediction Tool to Identify Disease-Relevant Nonsynonymous Single-Nucleotide Variants.
    Alirezaie N; Kernohan KD; Hartley T; Majewski J; Hocking TD
    Am J Hum Genet; 2018 Oct; 103(4):474-483. PubMed ID: 30220433
    [TBL] [Abstract][Full Text] [Related]  

  • 75.
    Seah YM; Stewart MK; Hoogestraat D; Ryder M; Cookson BT; Salipante SJ; Hoffman NG
    J Clin Microbiol; 2023 Aug; 61(8):e0184222. PubMed ID: 37428072
    [TBL] [Abstract][Full Text] [Related]  

  • 76. BAYSIC: a Bayesian method for combining sets of genome variants with improved specificity and sensitivity.
    Cantarel BL; Weaver D; McNeill N; Zhang J; Mackey AJ; Reese J
    BMC Bioinformatics; 2014 Apr; 15():104. PubMed ID: 24725768
    [TBL] [Abstract][Full Text] [Related]  

  • 77. seqQscorer: automated quality control of next-generation sequencing data using machine learning.
    Albrecht S; Sprang M; Andrade-Navarro MA; Fontaine JF
    Genome Biol; 2021 Mar; 22(1):75. PubMed ID: 33673854
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Enhanced copy number variants detection from whole-exome sequencing data using EXCAVATOR2.
    D'Aurizio R; Pippucci T; Tattini L; Giusti B; Pellegrini M; Magi A
    Nucleic Acids Res; 2016 Nov; 44(20):e154. PubMed ID: 27507884
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Best practices for variant calling in clinical sequencing.
    Koboldt DC
    Genome Med; 2020 Oct; 12(1):91. PubMed ID: 33106175
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Utility of clinical high-depth next generation sequencing for somatic variant detection in the PIK3CA-related overgrowth spectrum.
    Hucthagowder V; Shenoy A; Corliss M; Vigh-Conrad KA; Storer C; Grange DK; Cottrell CE
    Clin Genet; 2017 Jan; 91(1):79-85. PubMed ID: 27307077
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 50.