BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 27842593)

  • 21. Modulating the Cascade architecture of a minimal Type I-F CRISPR-Cas system.
    Gleditzsch D; Müller-Esparza H; Pausch P; Sharma K; Dwarakanath S; Urlaub H; Bange G; Randau L
    Nucleic Acids Res; 2016 Jul; 44(12):5872-82. PubMed ID: 27216815
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Repetitive DNA Reeling by the Cascade-Cas3 Complex in Nucleotide Unwinding Steps.
    Loeff L; Brouns SJJ; Joo C
    Mol Cell; 2018 May; 70(3):385-394.e3. PubMed ID: 29706536
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Gene Circuit Combining the Endogenous I-E Type CRISPR-Cas System and a Light Sensor to Produce Poly-β-Hydroxybutyric Acid Efficiently.
    Li X; Jiang W; Qi Q; Liang Q
    Biosensors (Basel); 2022 Aug; 12(8):. PubMed ID: 36005038
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A compact Cascade-Cas3 system for targeted genome engineering.
    Csörgő B; León LM; Chau-Ly IJ; Vasquez-Rifo A; Berry JD; Mahendra C; Crawford ED; Lewis JD; Bondy-Denomy J
    Nat Methods; 2020 Dec; 17(12):1183-1190. PubMed ID: 33077967
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Cas6e ribonuclease is not required for interference and adaptation by the E. coli type I-E CRISPR-Cas system.
    Semenova E; Kuznedelov K; Datsenko KA; Boudry PM; Savitskaya EE; Medvedeva S; Beloglazova N; Logacheva M; Yakunin AF; Severinov K
    Nucleic Acids Res; 2015 Jul; 43(12):6049-61. PubMed ID: 26013814
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spacer-length DNA intermediates are associated with Cas1 in cells undergoing primed CRISPR adaptation.
    Musharova O; Klimuk E; Datsenko KA; Metlitskaya A; Logacheva M; Semenova E; Severinov K; Savitskaya E
    Nucleic Acids Res; 2017 Apr; 45(6):3297-3307. PubMed ID: 28204574
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CRISPR adaptation in Escherichia coli subtypeI-E system.
    Kiro R; Goren MG; Yosef I; Qimron U
    Biochem Soc Trans; 2013 Dec; 41(6):1412-5. PubMed ID: 24256229
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Highly efficient primed spacer acquisition from targets destroyed by the Escherichia coli type I-E CRISPR-Cas interfering complex.
    Semenova E; Savitskaya E; Musharova O; Strotskaya A; Vorontsova D; Datsenko KA; Logacheva MD; Severinov K
    Proc Natl Acad Sci U S A; 2016 Jul; 113(27):7626-31. PubMed ID: 27325762
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CRP represses the CRISPR/Cas system in Escherichia coli: evidence that endogenous CRISPR spacers impede phage P1 replication.
    Yang CD; Chen YH; Huang HY; Huang HD; Tseng CP
    Mol Microbiol; 2014 Jun; 92(5):1072-91. PubMed ID: 24720807
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhancing flavonoid production by systematically tuning the central metabolic pathways based on a CRISPR interference system in Escherichia coli.
    Wu J; Du G; Chen J; Zhou J
    Sci Rep; 2015 Sep; 5():13477. PubMed ID: 26323217
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Histone-like Nucleoid-Structuring Protein (H-NS) Paralogue StpA Activates the Type I-E CRISPR-Cas System against Natural Transformation in Escherichia coli.
    Sun D; Mao X; Fei M; Chen Z; Zhu T; Qiu J
    Appl Environ Microbiol; 2020 Jul; 86(14):. PubMed ID: 32385085
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Using the CRISPR-Cas System to Positively Select Mutants in Genes Essential for Its Function.
    Yosef I; Goren MG; Edgar R; Qimron U
    Methods Mol Biol; 2015; 1311():233-50. PubMed ID: 25981477
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Repurposing the Endogenous Type I-E CRISPR/Cas System for Gene Repression in
    Qin Z; Yang Y; Yu S; Liu L; Chen Y; Chen J; Zhou J
    ACS Synth Biol; 2021 Jan; 10(1):84-93. PubMed ID: 33399467
    [No Abstract]   [Full Text] [Related]  

  • 34. Disabling a Type I-E CRISPR-Cas Nuclease with a Bacteriophage-Encoded Anti-CRISPR Protein.
    Pawluk A; Shah M; Mejdani M; Calmettes C; Moraes TF; Davidson AR; Maxwell KL
    mBio; 2017 Dec; 8(6):. PubMed ID: 29233895
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Efficient engineering of a bacteriophage genome using the type I-E CRISPR-Cas system.
    Kiro R; Shitrit D; Qimron U
    RNA Biol; 2014; 11(1):42-4. PubMed ID: 24457913
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Endogenous Gene Regulation as a Predicted Main Function of Type I-E CRISPR/Cas System in
    Bozic B; Repac J; Djordjevic M
    Molecules; 2019 Feb; 24(4):. PubMed ID: 30795631
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular recordings by directed CRISPR spacer acquisition.
    Shipman SL; Nivala J; Macklis JD; Church GM
    Science; 2016 Jul; 353(6298):aaf1175. PubMed ID: 27284167
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fermentation characteristics and protein expression patterns in a recombinant Escherichia coli mutant lacking phosphoglucose isomerase for poly(3-hydroxybutyrate) production.
    Kabir MM; Shimizu K
    Appl Microbiol Biotechnol; 2003 Aug; 62(2-3):244-55. PubMed ID: 12883871
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assembling the Streptococcus thermophilus clustered regularly interspaced short palindromic repeats (CRISPR) array for multiplex DNA targeting.
    Guo L; Xu K; Liu Z; Zhang C; Xin Y; Zhang Z
    Anal Biochem; 2015 Jun; 478():131-3. PubMed ID: 25748774
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improved poly(3-hydroxybutyrate) production in Escherichia coli by inactivation of cytochrome bd-II oxidase or/and NDH-II dehydrogenase in low efficient respiratory chains.
    Liu Q; Lin Z; Zhang Y; Li Y; Wang Z; Chen T
    J Biotechnol; 2014 Dec; 192 Pt A():170-6. PubMed ID: 25281801
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.