BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 27843173)

  • 1. Pilot Study on MAGE-C2 as a Potential Biomarker for Triple-Negative Breast Cancer.
    Zhao Q; Xu WT; Shalieer T
    Dis Markers; 2016; 2016():2325987. PubMed ID: 27843173
    [No Abstract]   [Full Text] [Related]  

  • 2. The potential mechanism of HIF-1α and CD147 in the development of triple-negative breast cancer.
    Chen M; Liu Z; Zheng K; Hu C; Peng P
    Medicine (Baltimore); 2024 Jun; 103(23):e38434. PubMed ID: 38847725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of four cancer-testis antigens in TNBC indicating potential universal immunotherapeutic targets.
    Xiao J; Huang F; Li L; Zhang L; Xie L; Liu B
    J Cancer Res Clin Oncol; 2023 Nov; 149(16):15003-15011. PubMed ID: 37610673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lactylproteome analysis indicates histone H4K12 lactylation as a novel biomarker in triple-negative breast cancer.
    Cui Z; Li Y; Lin Y; Zheng C; Luo L; Hu D; Chen Y; Xiao Z; Sun Y
    Front Endocrinol (Lausanne); 2024; 15():1328679. PubMed ID: 38779451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression and Clinical Significance of MAGE-A Proteins and mRNA in Lung Cancer Patients: A Retrospective Study.
    Zhu W; Xie HQ; Xie YQ; Lv XD
    Altern Ther Health Med; 2024 Feb; 30(2):131-135. PubMed ID: 37856809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overexpression of KLHL22 correlates with poor prognosis in patients with triple-negative breast cancer.
    Zhang T; Liu J; Wang J; Zhang C
    Transl Cancer Res; 2024 Feb; 13(2):798-807. PubMed ID: 38482450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression and clinical significance of MAPK and EGFR in triple-negative breast cancer.
    Jiang W; Wang X; Zhang C; Xue L; Yang L
    Oncol Lett; 2020 Mar; 19(3):1842-1848. PubMed ID: 32194678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SEPT3 as a Potential Molecular Target of Triple-Negative Breast Cancer.
    Yang LH; Wang GZ; Gao C
    Int J Gen Med; 2024; 17():1605-1613. PubMed ID: 38686040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of TUFT1 and Rac1-GTP levels in triple-negative breast cancer patients: clinical and pathological correlations.
    Shi SF; Cai RX; Ren YF; Li Y; Li S; Yin TL; Jia DX; Li YJ
    Clin Transl Oncol; 2024 Mar; ():. PubMed ID: 38478261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retraction Note: MAGE-C2/CT10 promotes growth and metastasis through upregulating c-Myc expression in prostate cancer.
    Qiu J; Yang B
    Mol Cell Biochem; 2023 Dec; 478(12):2919. PubMed ID: 37498497
    [No Abstract]   [Full Text] [Related]  

  • 11. Proteomic Analysis Revealed the Potential Role of MAGE-D2 in the Therapeutic Targeting of Triple-Negative Breast Cancer.
    Shi X; Liu C; Zheng W; Cao X; Li W; Zhang D; Zhu J; Zhang X; Chen Y
    Mol Cell Proteomics; 2024 Jan; 23(1):100703. PubMed ID: 38128647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Suitability of tumor-associated antibodies as predictive biomarker for response to immune checkpoint inhibitors in patients with melanoma: a short report.
    de Joode K; Veenbergen S; Kransse C; Kortleve D; Debets R; Mathijssen RHJ; Joosse A; Schreurs MWJ; Van der Veldt AAM
    J Immunother Cancer; 2023 Feb; 11(2):. PubMed ID: 36750254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cancer-Testis Antigens in Triple-Negative Breast Cancer: Role and Potential Utility in Clinical Practice.
    Lam RA; Tien TZ; Joseph CR; Lim JX; Thike AA; Iqbal J; Tan PH; Yeong JPS
    Cancers (Basel); 2021 Jul; 13(15):. PubMed ID: 34359776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased Melanoma-Associated Antigen C2 Expression Affords Resistance to Apoptotic Deathin Suspension-Cultured Tumor Cells.
    Park D; Han S; Joo H; Ka HI; Soh S; Park J; Yang Y
    J Breast Cancer; 2021 Apr; 24(2):138-152. PubMed ID: 33818016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Search of TGCT Biomarkers: A Comprehensive
    Raos D; Krasic J; Masic S; Abramovic I; Coric M; Kruslin B; Katusic Bojanac A; Bulic-Jakus F; Jezek D; Ulamec M; Sincic N
    Dis Markers; 2020; 2020():8841880. PubMed ID: 33224314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MAGE-C2/CT10 promotes growth and metastasis through upregulating c-Myc expression in prostate cancer.
    Qiu J; Yang B
    Mol Cell Biochem; 2021 Jan; 476(1):1-10. PubMed ID: 32935296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emerging roles of the MAGE protein family in stress response pathways.
    Florke Gee RR; Chen H; Lee AK; Daly CA; Wilander BA; Fon Tacer K; Potts PR
    J Biol Chem; 2020 Nov; 295(47):16121-16155. PubMed ID: 32921631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MAGEC2 Correlates With Unfavorable Prognosis And Promotes Tumor Development In HCC Via Epithelial-Mesenchymal Transition.
    Gu X; Mao Y; Shi C; Ye W; Hou N; Xu L; Chen Y; Zhao W
    Onco Targets Ther; 2019; 12():7843-7855. PubMed ID: 31576142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study on Attenuating Angiogenesis and Epithelial-Mesenchymal Transition (EMT) of Non-Small Cell Lung Carcinoma (NSCLC) by Regulating MAGEC2.
    Jiang S; Liu X; Li D; Yan M; Ju C; Sun J; Jiang F
    Technol Cancer Res Treat; 2018 Jan; 17():1533033818797587. PubMed ID: 30198403
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.