BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 27843695)

  • 1. A machine learning approach to identify functional biomarkers in human prefrontal cortex for individuals with traumatic brain injury using functional near-infrared spectroscopy.
    Karamzadeh N; Amyot F; Kenney K; Anderson A; Chowdhry F; Dashtestani H; Wassermann EM; Chernomordik V; Boccara C; Wegman E; Diaz-Arrastia R; Gandjbakhche AH
    Brain Behav; 2016 Nov; 6(11):e00541. PubMed ID: 27843695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The feasibility of fNIRS as a diagnostic tool for pediatric TBI: A pilot study.
    DA C; Jj L; Metting Z; Se R; Jm S; Jwj E; van der Naalt J
    Eur J Paediatr Neurol; 2021 Jan; 30():22-24. PubMed ID: 33378734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A semi-immersive virtual reality incremental swing balance task activates prefrontal cortex: a functional near-infrared spectroscopy study.
    Basso Moro S; Bisconti S; Muthalib M; Spezialetti M; Cutini S; Ferrari M; Placidi G; Quaresima V
    Neuroimage; 2014 Jan; 85 Pt 1():451-60. PubMed ID: 23684867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unsupervised Machine Learning Reveals Novel Traumatic Brain Injury Patient Phenotypes with Distinct Acute Injury Profiles and Long-Term Outcomes.
    Folweiler KA; Sandsmark DK; Diaz-Arrastia R; Cohen AS; Masino AJ
    J Neurotrauma; 2020 Jun; 37(12):1431-1444. PubMed ID: 32008422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduced prefrontal-temporal cortical activation during verbal fluency task in obsessive-compulsive disorder: A multi-channel near-infrared spectroscopy study.
    Liao J; Li T; Dong W; Wang J; Tian J; Liu J; Quan W; Yan J
    J Psychiatr Res; 2019 Feb; 109():33-40. PubMed ID: 30468975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine Learning Distinguishes Familiar from Unfamiliar Pairs of Subjects Performing an Eye Contact Task: A Systemic Physiology Augmented Functional Near-Infrared Spectroscopy Hyperscanning Study.
    Guglielmini S; Bopp G; Marcar VL; Scholkmann F; Wolf M
    Adv Exp Med Biol; 2022; 1395():177-182. PubMed ID: 36527634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Statistical machine learning to identify traumatic brain injury (TBI) from structural disconnections of white matter networks.
    Mitra J; Shen KK; Ghose S; Bourgeat P; Fripp J; Salvado O; Pannek K; Taylor DJ; Mathias JL; Rose S
    Neuroimage; 2016 Apr; 129():247-259. PubMed ID: 26827816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-trial classification of near-infrared spectroscopy signals arising from multiple cortical regions.
    Schudlo LC; Chau T
    Behav Brain Res; 2015 Sep; 290():131-42. PubMed ID: 25960315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. K-Means Clustering Machine Learning Approach Reveals Groups of Homogeneous Individuals With Unique Brain Activation, Task, and Performance Dynamics Using fNIRS.
    Saikia MJ
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():2535-2544. PubMed ID: 37216239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Active inhibition of task-irrelevant sounds and its neural basis in patients with attention deficits after traumatic brain injury.
    Sawamura D; Ikoma K; Yoshida K; Inagaki Y; Ogawa K; Sakai S
    Brain Inj; 2014; 28(11):1455-60. PubMed ID: 24946201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uncovering precision phenotype-biomarker associations in traumatic brain injury using topological data analysis.
    Nielson JL; Cooper SR; Yue JK; Sorani MD; Inoue T; Yuh EL; Mukherjee P; Petrossian TC; Paquette J; Lum PY; Carlsson GE; Vassar MJ; Lingsma HF; Gordon WA; Valadka AB; Okonkwo DO; Manley GT; Ferguson AR;
    PLoS One; 2017; 12(3):e0169490. PubMed ID: 28257413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Near-Infrared Spectroscopy: A Promising Prehospital Tool for Management of Traumatic Brain Injury.
    Peters J; Van Wageningen B; Hoogerwerf N; Tan E
    Prehosp Disaster Med; 2017 Aug; 32(4):414-418. PubMed ID: 28351447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic topographical pattern classification of multichannel prefrontal NIRS signals.
    Schudlo LC; Power SD; Chau T
    J Neural Eng; 2013 Aug; 10(4):046018. PubMed ID: 23867792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hemodynamic changes in the prefrontal cortex during mental works as measured by multi channel near-infrared spectroscopy (NIRS).
    Sumitani S; Tanaka T; Tayoshi S; Ota K; Kameoka N; Morimune M; Shibuya-Tayoshi S; Kinouchi S; Ueno S; Ohmori T
    J Med Invest; 2005 Nov; 52 Suppl():302-3. PubMed ID: 16366522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing prefrontal cortex hemodynamic alterations during facial emotion recognition for major depression disorder through functional near-infrared spectroscopy.
    Gao L; Cai Y; Wang H; Wang G; Zhang Q; Yan X
    J Neural Eng; 2019 Apr; 16(2):026026. PubMed ID: 30669122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advancing post-traumatic seizure classification and biomarker identification: Information decomposition based multimodal fusion and explainable machine learning with missing neuroimaging data.
    Akbar MN; Ruf SF; Singh A; Faghihpirayesh R; Garner R; Bennett A; Alba C; Rocca M; Imbiriba T; Erdoğmuş D; Duncan D
    Comput Med Imaging Graph; 2024 Jul; 115():102386. PubMed ID: 38718562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of the prefrontal cortex during the wisconsin card sorting test (Keio Version) as measured by two-channel near-infrared spectroscopy in patients with traumatic brain injury.
    Hashimoto K; Uruma G; Abo M
    Eur Neurol; 2008; 59(1-2):24-30. PubMed ID: 17917454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluating Performance of EEG Data-Driven Machine Learning for Traumatic Brain Injury Classification.
    Vivaldi N; Caiola M; Solarana K; Ye M
    IEEE Trans Biomed Eng; 2021 Nov; 68(11):3205-3216. PubMed ID: 33635785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Different hemodynamic response patterns in the prefrontal cortical sub-regions according to the clinical stages of psychosis.
    Koike S; Takizawa R; Nishimura Y; Takano Y; Takayanagi Y; Kinou M; Araki T; Harima H; Fukuda M; Okazaki Y; Kasai K
    Schizophr Res; 2011 Oct; 132(1):54-61. PubMed ID: 21813266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduced prefrontal hemodynamic response in adult attention-deficit hyperactivity disorder as measured by near-infrared spectroscopy.
    Ueda S; Ota T; Iida J; Yamamuro K; Yoshino H; Kishimoto N; Kishimoto T
    Psychiatry Clin Neurosci; 2018 Jun; 72(6):380-390. PubMed ID: 29405508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.