These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 27844080)

  • 1. Peeling the astronomical onion.
    Rosu-Finsen A; Marchione D; Salter TL; Stubbing JW; Brown WA; McCoustra MR
    Phys Chem Chem Phys; 2016 Nov; 18(46):31930-31935. PubMed ID: 27844080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water formation through O2 + D pathway on cold silicate and amorphous water ice surfaces of interstellar interest.
    Chaabouni H; Minissale M; Manicò G; Congiu E; Noble JA; Baouche S; Accolla M; Lemaire JL; Pirronello V; Dulieu F
    J Chem Phys; 2012 Dec; 137(23):234706. PubMed ID: 23267497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ice in space: surface science investigations of the thermal desorption of model interstellar ices on dust grain analogue surfaces.
    Burke DJ; Brown WA
    Phys Chem Chem Phys; 2010 Jun; 12(23):5947-69. PubMed ID: 20520900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface science investigations of the role of CO₂ in astrophysical ices.
    Edridge JL; Freimann K; Burke DJ; Brown WA
    Philos Trans A Math Phys Eng Sci; 2013 Jul; 371(1994):20110578. PubMed ID: 23734046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermally induced mixing of water dominated interstellar ices.
    Burke DJ; Wolff AJ; Edridge JL; Brown WA
    Phys Chem Chem Phys; 2008 Aug; 10(32):4956-67. PubMed ID: 18688540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of oxygen chemistry on model interstellar grain surfaces.
    Rosu-Finsen A; McCoustra MRS
    Phys Chem Chem Phys; 2018 Feb; 20(8):5368-5376. PubMed ID: 28956031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic Monte Carlo simulations of water ice porosity: extrapolations of deposition parameters from the laboratory to interstellar space.
    Clements AR; Berk B; Cooke IR; Garrod RT
    Phys Chem Chem Phys; 2018 Feb; 20(8):5553-5568. PubMed ID: 29387847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of atomic and molecular deuterium with a nonporous amorphous water ice surface between 8 and 30 K.
    Amiaud L; Dulieu F; Fillion JH; Momeni A; Lemaire JL
    J Chem Phys; 2007 Oct; 127(14):144709. PubMed ID: 17935425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silicate-mediated interstellar water formation: A theoretical study.
    Molpeceres G; Rimola A; Ceccarelli C; Kästner J; Ugliengo P; Maté B
    Mon Not R Astron Soc; 2019 May; 482(2):5389-5400. PubMed ID: 31156274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spontaneous polarization of solid CO on water ices and some astrophysical implications.
    Rosu-Finsen A; Lasne J; Cassidy A; McCoustra MR; Field D
    Phys Chem Chem Phys; 2016 Feb; 18(7):5159-71. PubMed ID: 26700324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of Hydronium Ion (H
    Martinez R; Agnihotri AN; Boduch P; Domaracka A; Fulvio D; Muniz G; Palumbo ME; Rothard H; Strazzulla G
    J Phys Chem A; 2019 Sep; 123(37):8001-8008. PubMed ID: 31436998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption of Methylamine on Amorphous Ice under Interstellar Conditions. A Grand Canonical Monte Carlo Simulation Study.
    Horváth RA; Hantal G; Picaud S; Szőri M; Jedlovszky P
    J Phys Chem A; 2018 Apr; 122(13):3398-3412. PubMed ID: 29537265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An embedded cluster study of the formation of water on interstellar dust grains.
    Goumans TP; Catlow CR; Brown WA; Kästner J; Sherwood P
    Phys Chem Chem Phys; 2009 Jul; 11(26):5431-6. PubMed ID: 19551212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three milieux for interstellar chemistry: gas, dust, and ice.
    Herbst E
    Phys Chem Chem Phys; 2014 Feb; 16(8):3344-59. PubMed ID: 24220255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sticking of CO to crystalline and amorphous ice surfaces.
    Al-Halabi A; van Dishoeck EF; Kroes GJ
    J Chem Phys; 2004 Feb; 120(7):3358-67. PubMed ID: 15268490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radiolysis of astrophysical ice analogs by energetic ions: the effect of projectile mass and ice temperature.
    Pilling S; Duarte ES; Domaracka A; Rothard H; Boduch P; da Silveira EF
    Phys Chem Chem Phys; 2011 Sep; 13(35):15755-65. PubMed ID: 21647477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. THz and mid-IR spectroscopy of interstellar ice analogs: methyl and carboxylic acid groups.
    Ioppolo S; McGuire BA; Allodi MA; Blake GA
    Faraday Discuss; 2014; 168():461-84. PubMed ID: 25302394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of the prebiotic molecule NH
    Song L; Kästner J
    Phys Chem Chem Phys; 2016 Oct; 18(42):29278-29285. PubMed ID: 27731439
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laboratory surface astrochemistry experiments.
    Frankland VL; Rosu-Finsen A; Lasne J; Collings MP; McCoustra MR
    Rev Sci Instrum; 2015 May; 86(5):055103. PubMed ID: 26026554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption of Formamide at the Surface of Amorphous and Crystalline Ices under Interstellar and Tropospheric Conditions. A Grand Canonical Monte Carlo Simulation Study.
    Kiss B; Picaud S; Szőri M; Jedlovszky P
    J Phys Chem A; 2019 Apr; 123(13):2935-2948. PubMed ID: 30839213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.