These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 27844442)

  • 1. Quantifying Force and Viscoelasticity Inside Living Cells Using an Active-Passive Calibrated Optical Trap.
    Ritter CM; Mas J; Oddershede L; Berg-Sørensen K
    Methods Mol Biol; 2017; 1486():513-536. PubMed ID: 27844442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measuring Molecular Forces Using Calibrated Optical Tweezers in Living Cells.
    Hendricks AG; Goldman YE
    Methods Mol Biol; 2017; 1486():537-552. PubMed ID: 27844443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative determination of optical trapping strength and viscoelastic moduli inside living cells.
    Mas J; Richardson AC; Reihani SN; Oddershede LB; Berg-Sørensen K
    Phys Biol; 2013 Aug; 10(4):046006. PubMed ID: 23820071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiplexed fluctuation-dissipation-theorem calibration of optical tweezers inside living cells.
    Yan H; Johnston JF; Cahn SB; King MC; Mochrie SGJ
    Rev Sci Instrum; 2017 Nov; 88(11):113112. PubMed ID: 29195389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement of viscoelastic properties of the cellular cytoplasm using optically trapped Brownian probes.
    Vaippully R; Ramanujan V; Bajpai S; Roy B
    J Phys Condens Matter; 2020 May; 32(23):235101. PubMed ID: 32059195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Active-passive calibration of optical tweezers in viscoelastic media.
    Fischer M; Richardson AC; Reihani SN; Oddershede LB; Berg-Sørensen K
    Rev Sci Instrum; 2010 Jan; 81(1):015103. PubMed ID: 20113125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Beyond the Hookean Spring Model: Direct Measurement of Optical Forces Through Light Momentum Changes.
    Farré A; Marsà F; Montes-Usategui M
    Methods Mol Biol; 2017; 1486():41-76. PubMed ID: 27844425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical Torque Wrench Design and Calibration.
    Santybayeva Z; Pedaci F
    Methods Mol Biol; 2017; 1486():157-181. PubMed ID: 27844429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction and calibration of an optical trap on a fluorescence optical microscope.
    Lee WM; Reece PJ; Marchington RF; Metzger NK; Dholakia K
    Nat Protoc; 2007; 2(12):3226-38. PubMed ID: 18079723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical manipulation of single molecules in the living cell.
    Norregaard K; Jauffred L; Berg-Sørensen K; Oddershede LB
    Phys Chem Chem Phys; 2014 Jul; 16(25):12614-24. PubMed ID: 24651890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical trapping at gigapascal pressures.
    Bowman RW; Gibson GM; Padgett MJ; Saglimbeni F; Di Leonardo R
    Phys Rev Lett; 2013 Mar; 110(9):095902. PubMed ID: 23496726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calibration of optical traps by dual trapping of one bead.
    Dutov P; Schieber J
    Opt Lett; 2013 Nov; 38(22):4923-6. PubMed ID: 24322167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measuring microscopic viscosity with optical tweezers as a confocal probe.
    Nemet BA; Cronin-Golomb M
    Appl Opt; 2003 Apr; 42(10):1820-32. PubMed ID: 12683762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative study of methods to calibrate the stiffness of a single-beam gradient-force optical tweezers over various laser trapping powers.
    Sarshar M; Wong WT; Anvari B
    J Biomed Opt; 2014; 19(11):115001. PubMed ID: 25375348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers.
    Mills JP; Qie L; Dao M; Lim CT; Suresh S
    Mech Chem Biosyst; 2004 Sep; 1(3):169-80. PubMed ID: 16783930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using optical tweezers for measuring the interaction forces between human bone cells and implant surfaces: System design and force calibration.
    Andersson M; Madgavkar A; Stjerndahl M; Wu Y; Tan W; Duran R; Niehren S; Mustafa K; Arvidson K; Wennerberg A
    Rev Sci Instrum; 2007 Jul; 78(7):074302. PubMed ID: 17672780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing DNA-DNA Interactions with a Combination of Quadruple-Trap Optical Tweezers and Microfluidics.
    Brouwer I; King GA; Heller I; Biebricher AS; Peterman EJG; Wuite GJL
    Methods Mol Biol; 2017; 1486():275-293. PubMed ID: 27844432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Resolution "Fleezers": Dual-Trap Optical Tweezers Combined with Single-Molecule Fluorescence Detection.
    Whitley KD; Comstock MJ; Chemla YR
    Methods Mol Biol; 2017; 1486():183-256. PubMed ID: 27844430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Custom-Made Microspheres for Optical Tweezers.
    Jannasch A; Abdosamadi MK; Ramaiya A; De S; Ferro V; Sonnberger A; Schäffer E
    Methods Mol Biol; 2017; 1486():137-155. PubMed ID: 27844428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Counter-propagating dual-trap optical tweezers based on linear momentum conservation.
    Ribezzi-Crivellari M; Huguet JM; Ritort F
    Rev Sci Instrum; 2013 Apr; 84(4):043104. PubMed ID: 23635178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.