These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 27844442)

  • 41. Quantitative Analysis of Viscoelastic Properties of Red Blood Cells using Optical Tweezers and Defocusing Microscopy.
    Barreto L; Gomez F; Lourenço PS; Freitas DG; Soares J; Berto-Junior C; Agero U; Viana NB; Pontes B
    J Vis Exp; 2022 Mar; (181):. PubMed ID: 35404355
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Tunable optical tweezers for wavelength-dependent measurements.
    Hester B; Campbell GK; López-Mariscal C; Filgueira CL; Huschka R; Halas NJ; Helmerson K
    Rev Sci Instrum; 2012 Apr; 83(4):043114. PubMed ID: 22559522
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Multipoint viscosity measurements in microfluidic channels using optical tweezers.
    Keen S; Yao A; Leach J; Di Leonardo R; Saunter C; Love G; Cooper J; Padgett M
    Lab Chip; 2009 Jul; 9(14):2059-62. PubMed ID: 19568675
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Photonic Crystal Optical Tweezers with High Efficiency for Live Biological Samples and Viability Characterization.
    Jing P; Wu J; Liu GW; Keeler EG; Pun SH; Lin LY
    Sci Rep; 2016 Jan; 6():19924. PubMed ID: 26814808
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Introduction to optical tweezers: background, system designs, and commercial solutions.
    van Mameren J; Wuite GJ; Heller I
    Methods Mol Biol; 2011; 783():1-20. PubMed ID: 21909880
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Power spectrum analysis with least-squares fitting: amplitude bias and its elimination, with application to optical tweezers and atomic force microscope cantilevers.
    Nørrelykke SF; Flyvbjerg H
    Rev Sci Instrum; 2010 Jul; 81(7):075103. PubMed ID: 20687755
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Simulation of 3D nanomanipulation for rough spherical elastic and viscoelastic particles in a liquid medium; experimentally determination of cell's roughness parameters and Hamaker constant's correction.
    Korayem MH; Shahali S; Rastegar Z
    J Mech Behav Biomed Mater; 2019 Feb; 90():313-327. PubMed ID: 30396045
    [TBL] [Abstract][Full Text] [Related]  

  • 48. High-resolution dual-trap optical tweezers with differential detection: instrument design.
    Bustamante C; Chemla YR; Moffitt JR
    Cold Spring Harb Protoc; 2009 Oct; 2009(10):pdb.ip73. PubMed ID: 20147038
    [TBL] [Abstract][Full Text] [Related]  

  • 49. High precision and continuous optical transport using a standing wave optical line trap.
    Demergis V; Florin EL
    Opt Express; 2011 Oct; 19(21):20833-48. PubMed ID: 21997093
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Manipulation and Motion of Organelles and Single Molecules in Living Cells.
    Norregaard K; Metzler R; Ritter CM; Berg-Sørensen K; Oddershede LB
    Chem Rev; 2017 Mar; 117(5):4342-4375. PubMed ID: 28156096
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Minimum-variance Brownian motion control of an optically trapped probe.
    Huang Y; Zhang Z; Menq CH
    Appl Opt; 2009 Oct; 48(30):5871-80. PubMed ID: 19844327
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Variety in intracellular diffusion during the cell cycle.
    Selhuber-Unkel C; Yde P; Berg-Sørensen K; Oddershede LB
    Phys Biol; 2009 Jul; 6(2):025015. PubMed ID: 19571361
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Characterization of the Stiffness of Multiple Particles Trapped by Dielectrophoretic Tweezers in a Microfluidic Device.
    Son M; Choi S; Ko KH; Kim MH; Lee SY; Key J; Yoon YR; Park IS; Lee SW
    Langmuir; 2016 Jan; 32(3):922-7. PubMed ID: 26734855
    [TBL] [Abstract][Full Text] [Related]  

  • 54. High-resolution dual-trap optical tweezers with differential detection: minimizing the influence of measurement noise.
    Bustamante C; Chemla YR; Moffitt JR
    Cold Spring Harb Protoc; 2009 Oct; 2009(10):pdb.ip75. PubMed ID: 20147040
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Quantifying noise in optical tweezers by allan variance.
    Czerwinski F; Richardson AC; Oddershede LB
    Opt Express; 2009 Jul; 17(15):13255-69. PubMed ID: 19654731
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Viscoelastic deformation of lipid bilayer vesicles.
    Wu SH; Sankhagowit S; Biswas R; Wu S; Povinelli ML; Malmstadt N
    Soft Matter; 2015 Oct; 11(37):7385-91. PubMed ID: 26268612
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A new device for assessing changes in skin viscoelasticity using indentation and optical measurement.
    Clancy NT; Nilsson GE; Anderson CD; Leahy MJ
    Skin Res Technol; 2010 May; 16(2):210-28. PubMed ID: 20456102
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Hemodynamic forces can be accurately measured in vivo with optical tweezers.
    Harlepp S; Thalmann F; Follain G; Goetz JG
    Mol Biol Cell; 2017 Nov; 28(23):3252-3260. PubMed ID: 28904205
    [TBL] [Abstract][Full Text] [Related]  

  • 59. How to calibrate an object-adapted optical trap for force sensing and interferometric shape tracking of asymmetric structures.
    Koch M; Rohrbach A
    Opt Express; 2014 Oct; 22(21):25242-57. PubMed ID: 25401558
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Stretching submicron biomolecules with constant-force axial optical tweezers.
    Chen YF; Blab GA; Meiners JC
    Biophys J; 2009 Jun; 96(11):4701-8. PubMed ID: 19486692
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.