These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 27844457)

  • 41. Use of a Sampling Area-Adjusted Adenosine Triphosphate Bioluminescence Assay Based on Digital Image Quantification to Assess the Cleanliness of Hospital Surfaces.
    Ho YH; Wang LS; Jiang HL; Chang CH; Hsieh CJ; Chang DC; Tu HY; Chiu TY; Chao HJ; Tseng CC
    Int J Environ Res Public Health; 2016 Jun; 13(6):. PubMed ID: 27294944
    [TBL] [Abstract][Full Text] [Related]  

  • 42. NASA and the search for life in the universe.
    Dick SJ
    Endeavour; 2006 Jun; 30(2):71-5. PubMed ID: 16581126
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Insights into the extremotolerance of Acinetobacter radioresistens 50v1, a gram-negative bacterium isolated from the Mars Odyssey spacecraft.
    McCoy KB; Derecho I; Wong T; Tran HM; Huynh TD; La Duc MT; Venkateswaran K; Mogul R
    Astrobiology; 2012 Sep; 12(9):854-62. PubMed ID: 22917036
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Procedures necessary for the prevention of planetary contamination.
    Hall LB; Bruch CW
    Life Sci Space Res; 1965; 3():48-62. PubMed ID: 12035807
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A consensus approach to planetary protection requirements: recommendations for Mars lander missions.
    Rummel JD; Meyer MA
    Adv Space Res; 1996; 18(1-2):317-21. PubMed ID: 11538979
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Solid Phase Micro Extraction: Potential for Organic Contamination Control for Planetary Protection of Life-Detection Missions to the Icy Moons of the Outer Solar System.
    Royle SH; Watson JS; Zhang Y; Chatzitheoklitos G; Sephton MA
    Astrobiology; 2019 Sep; 19(9):1153-1166. PubMed ID: 31216175
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Societal issues as Mars mission impediments: planetary protection and contamination concerns.
    Race MS
    Adv Space Res; 1995 Mar; 15(3):285-92. PubMed ID: 11539240
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Planetary protection issues in advance of human exploration of Mars.
    McKay CP; Davis WL
    Adv Space Res; 1989; 9(6):197-202. PubMed ID: 11537372
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The microbiology of spacecraft hardware: lessons learned from the planetary protection activities on the Beagle 2 spacecraft.
    Pillinger JM; Pillinger CT; Sancisi-Frey S; Spry JA
    Res Microbiol; 2006; 157(1):19-24. PubMed ID: 16431083
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Survival of endospores of Bacillus subtilis on spacecraft surfaces under simulated martian environments: implications for the forward contamination of Mars.
    Schuerger AC; Mancinelli RL; Kern RG; Rothschild LJ; McKay CP
    Icarus; 2003 Oct; 165(2):253-76. PubMed ID: 14649627
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The Mawrth Vallis region of Mars: A potential landing site for the Mars Science Laboratory (MSL) mission.
    Michalski JR; Jean-PierreBibring ; Poulet F; Loizeau D; Mangold N; Dobrea EN; Bishop JL; Wray JJ; McKeown NK; Parente M; Hauber E; Altieri F; Carrozzo FG; Niles PB
    Astrobiology; 2010 Sep; 10(7):687-703. PubMed ID: 20950170
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Microbial Protocols for Spacecraft: 3. Spore Monolayer Preparation Methods for Ultraviolet Irradiation Exposures.
    Schuerger AC; Headrick EL
    Astrobiology; 2023 Aug; 23(8):908-920. PubMed ID: 36946872
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Charged particle spectra measured during the transit to Mars with the Mars Science Laboratory Radiation Assessment Detector (MSL/RAD).
    Ehresmann B; Hassler DM; Zeitlin C; Guo J; Köhler J; Wimmer-Schweingruber RF; Appel JK; Brinza DE; Rafkin SC; Böttcher SI; Burmeister S; Lohf H; Martin C; Böhm E; Matthiä D; Reitz G
    Life Sci Space Res (Amst); 2016 Aug; 10():29-37. PubMed ID: 27662785
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Modern aspects of planetary protection and requirements to sterilization of space hardware.
    Demidov VV; Goncharov AA; Osipov VB; Trofimov VI
    Adv Space Res; 1995 Mar; 15(3):251-5. PubMed ID: 11539234
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Using a simplified ATP algorithm to improve data reliability and improve cleanliness standards for surface and medical device hygiene.
    Whiteley GS; Glasbey TO; Fahey PP
    Infect Dis Health; 2022 Feb; 27(1):3-9. PubMed ID: 34391730
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Use of ATP bioluminescence for assessing the cleanliness of hospital surfaces: a review of the published literature (1990-2012).
    Amodio E; Dino C
    J Infect Public Health; 2014; 7(2):92-8. PubMed ID: 24231159
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Microscopic Characterization of Biological and Inert Particles Associated with Spacecraft Assembly Cleanroom.
    Malli Mohan GB; Stricker MC; Venkateswaran K
    Sci Rep; 2019 Oct; 9(1):14251. PubMed ID: 31582832
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Application of a fluorescent marker with quantitative bioburden methods to assess cleanliness.
    Hung IC; Chang HY; Cheng A; Chen AC; Ting L; Chen MW; Lai YH; Sheng WH
    Infect Control Hosp Epidemiol; 2018 Nov; 39(11):1296-1300. PubMed ID: 30221609
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The adenosine triphosphate method as a quality control tool to assess 'cleanliness' of frequently touched hospital surfaces.
    Knape L; Hambraeus A; Lytsy B
    J Hosp Infect; 2015 Oct; 91(2):166-70. PubMed ID: 26213368
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Phoenix--the first Mars Scout mission.
    Shotwell R
    Acta Astronaut; 2005; 57(2-8):121-34. PubMed ID: 16010756
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.