These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
680 related articles for article (PubMed ID: 27844463)
1. Fluid-Structure Interaction Study of Transcatheter Aortic Valve Dynamics Using Smoothed Particle Hydrodynamics. Mao W; Li K; Sun W Cardiovasc Eng Technol; 2016 Dec; 7(4):374-388. PubMed ID: 27844463 [TBL] [Abstract][Full Text] [Related]
2. Fully-coupled fluid-structure interaction simulation of the aortic and mitral valves in a realistic 3D left ventricle model. Mao W; Caballero A; McKay R; Primiano C; Sun W PLoS One; 2017; 12(9):e0184729. PubMed ID: 28886196 [TBL] [Abstract][Full Text] [Related]
3. Simulated elliptical bioprosthetic valve deformation: implications for asymmetric transcatheter valve deployment. Sun W; Li K; Sirois E J Biomech; 2010 Dec; 43(16):3085-90. PubMed ID: 20817163 [TBL] [Abstract][Full Text] [Related]
4. Investigation the effect of geometry and position of polymeric heart valves on hemodynamic with fluid-structure interaction numerical method. Farokhi EA; Niroomand-Oscuii H; Yazdanpanah K Med Eng Phys; 2021 Nov; 97():10-17. PubMed ID: 34756333 [TBL] [Abstract][Full Text] [Related]
5. Computational fluid dynamics simulation of transcatheter aortic valve degeneration. Dwyer HA; Matthews PB; Azadani A; Jaussaud N; Ge L; Guy TS; Tseng EE Interact Cardiovasc Thorac Surg; 2009 Aug; 9(2):301-8. PubMed ID: 19414489 [TBL] [Abstract][Full Text] [Related]
6. Multiphysics simulation of the effect of leaflet thickness inhomogeneity and material anisotropy on the stress-strain distribution on the aortic valve. Joda A; Jin Z; Haverich A; Summers J; Korossis S J Biomech; 2016 Aug; 49(12):2502-12. PubMed ID: 26961798 [TBL] [Abstract][Full Text] [Related]
7. Characterization of a bioprosthetic bicuspid venous valve hemodynamics: implications for mechanism of valve dynamics. Tien WH; Chen HY; Berwick ZC; Krieger J; Chambers S; Dabiri D; Kassab GS Eur J Vasc Endovasc Surg; 2014 Oct; 48(4):459-64. PubMed ID: 25150441 [TBL] [Abstract][Full Text] [Related]
8. Leaflet stress and strain distributions following incomplete transcatheter aortic valve expansion. Abbasi M; Azadani AN J Biomech; 2015 Oct; 48(13):3663-71. PubMed ID: 26338100 [TBL] [Abstract][Full Text] [Related]
9. Numerical evaluation of transcatheter aortic valve performance during heart beating and its post-deployment fluid-structure interaction analysis. Ghosh RP; Marom G; Bianchi M; D'souza K; Zietak W; Bluestein D Biomech Model Mechanobiol; 2020 Oct; 19(5):1725-1740. PubMed ID: 32095912 [TBL] [Abstract][Full Text] [Related]
10. Stress Analysis of Transcatheter Aortic Valve Leaflets Under Dynamic Loading: Effect of Reduced Tissue Thickness. Abbasi M; Azadani AN J Heart Valve Dis; 2017 Jul; 26(4):386-396. PubMed ID: 29302937 [TBL] [Abstract][Full Text] [Related]
11. Smoothed particle hydrodynamics based FSI simulation of the native and mechanical heart valves in a patient-specific aortic model. Laha S; Fourtakas G; Das PK; Keshmiri A Sci Rep; 2024 Mar; 14(1):6762. PubMed ID: 38514703 [TBL] [Abstract][Full Text] [Related]
12. An In Vitro Feasibility Study of the Influence of Configurations and Leaflet Thickness on the Hydrodynamics of Deformed Transcatheter Aortic Valve. Feng W; Yang X; Liu Y; Fan Y Artif Organs; 2017 Aug; 41(8):735-743. PubMed ID: 28233370 [TBL] [Abstract][Full Text] [Related]
13. Impact of modeling fluid-structure interaction in the computational analysis of aortic root biomechanics. Sturla F; Votta E; Stevanella M; Conti CA; Redaelli A Med Eng Phys; 2013 Dec; 35(12):1721-30. PubMed ID: 24001692 [TBL] [Abstract][Full Text] [Related]
14. Flow-Structure Interaction Simulations of the Aortic Heart Valve at Physiologic Conditions: The Role of Tissue Constitutive Model. Gilmanov A; Stolarski H; Sotiropoulos F J Biomech Eng; 2018 Apr; 140(4):. PubMed ID: 29305610 [TBL] [Abstract][Full Text] [Related]
16. Validation of a fluid-structure interaction model of a heart valve using the dynamic mesh method in fluent. Dumont K; Stijnen JM; Vierendeels J; van de Vosse FN; Verdonck PR Comput Methods Biomech Biomed Engin; 2004 Jun; 7(3):139-46. PubMed ID: 15512757 [TBL] [Abstract][Full Text] [Related]
17. The influence of leaflet skin friction and stiffness on the performance of bioprosthetic aortic valves. Dellimore K; Kemp I; Scheffer C; Weich H; Doubell A Australas Phys Eng Sci Med; 2013 Dec; 36(4):473-86. PubMed ID: 24264225 [TBL] [Abstract][Full Text] [Related]
18. In Vitro Validation of a Numerical Simulation of Leaflet Kinematics in a Polymeric Aortic Valve Under Physiological Conditions. Gharaie SH; Mosadegh B; Morsi Y Cardiovasc Eng Technol; 2018 Mar; 9(1):42-52. PubMed ID: 29322329 [TBL] [Abstract][Full Text] [Related]
19. Fluid-structure interaction modeling of compliant aortic valves using the lattice Boltzmann CFD and FEM methods. Morany A; Lavon K; Gomez Bardon R; Kovarovic B; Hamdan A; Bluestein D; Haj-Ali R Biomech Model Mechanobiol; 2023 Jun; 22(3):837-850. PubMed ID: 36763197 [TBL] [Abstract][Full Text] [Related]
20. Fluid Dynamic Characterization of Transcatheter Aortic Valves Using Particle Image Velocimetry. Barakat M; Dvir D; Azadani AN Artif Organs; 2018 Nov; 42(11):E357-E368. PubMed ID: 30198167 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]