These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
276 related articles for article (PubMed ID: 27844507)
1. Probing the binding mechanism of mercaptoguanine derivatives as inhibitors of HPPK by docking and molecular dynamics simulations. Marimuthu P; Singaravelu K; Namasivayam V J Biomol Struct Dyn; 2017 Dec; 35(16):3507-3521. PubMed ID: 27844507 [TBL] [Abstract][Full Text] [Related]
2. Structure-based design and development of functionalized Mercaptoguanine derivatives as inhibitors of the folate biosynthesis pathway enzyme 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase from Staphylococcus aureus. Dennis ML; Chhabra S; Wang ZC; Debono A; Dolezal O; Newman J; Pitcher NP; Rahmani R; Cleary B; Barlow N; Hattarki M; Graham B; Peat TS; Baell JB; Swarbrick JD J Med Chem; 2014 Nov; 57(22):9612-26. PubMed ID: 25357262 [TBL] [Abstract][Full Text] [Related]
3. Exploring the chemical space around 8-mercaptoguanine as a route to new inhibitors of the folate biosynthesis enzyme HPPK. Chhabra S; Barlow N; Dolezal O; Hattarki MK; Newman J; Peat TS; Graham B; Swarbrick JD PLoS One; 2013; 8(4):e59535. PubMed ID: 23565155 [TBL] [Abstract][Full Text] [Related]
4. Structural Basis for the Selective Binding of Inhibitors to 6-Hydroxymethyl-7,8-dihydropterin Pyrophosphokinase from Staphylococcus aureus and Escherichia coli. Dennis ML; Pitcher NP; Lee MD; DeBono AJ; Wang ZC; Harjani JR; Rahmani R; Cleary B; Peat TS; Baell JB; Swarbrick JD J Med Chem; 2016 Jun; 59(11):5248-63. PubMed ID: 27094768 [TBL] [Abstract][Full Text] [Related]
5. Structure of S. aureus HPPK and the discovery of a new substrate site inhibitor. Chhabra S; Dolezal O; Collins BM; Newman J; Simpson JS; Macreadie IG; Fernley R; Peat TS; Swarbrick JD PLoS One; 2012; 7(1):e29444. PubMed ID: 22276115 [TBL] [Abstract][Full Text] [Related]
6. Mechanism of the conformational transitions in 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase as revealed by NMR spectroscopy. Li G; Felczak K; Shi G; Yan H Biochemistry; 2006 Oct; 45(41):12573-81. PubMed ID: 17029412 [TBL] [Abstract][Full Text] [Related]
7. Reaction trajectory of pyrophosphoryl transfer catalyzed by 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase. Blaszczyk J; Shi G; Li Y; Yan H; Ji X Structure; 2004 Mar; 12(3):467-75. PubMed ID: 15016362 [TBL] [Abstract][Full Text] [Related]
8. An enhanced molecular dynamics study of HPPK-ATP conformation space exploration and ATP binding to HPPK. Su L; Cukier RI J Phys Chem A; 2009 Mar; 113(10):2025-35. PubMed ID: 19191740 [TBL] [Abstract][Full Text] [Related]
9. Bisubstrate analogue inhibitors of 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase: synthesis and biochemical and crystallographic studies. Shi G; Blaszczyk J; Ji X; Yan H J Med Chem; 2001 Apr; 44(9):1364-71. PubMed ID: 11311059 [TBL] [Abstract][Full Text] [Related]
10. Catalytic center assembly of HPPK as revealed by the crystal structure of a ternary complex at 1.25 A resolution. Blaszczyk J; Shi G; Yan H; Ji X Structure; 2000 Oct; 8(10):1049-58. PubMed ID: 11080626 [TBL] [Abstract][Full Text] [Related]
11. Molecular dynamics simulations of the Escherichia coli HPPK apo-enzyme reveal a network of conformational transitions. Gao K; He H; Yang M; Yan H Biochemistry; 2015 Nov; 54(44):6734-42. PubMed ID: 26492157 [TBL] [Abstract][Full Text] [Related]
12. Bisubstrate analogue inhibitors of 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase: New design with improved properties. Shi G; Shaw G; Liang YH; Subburaman P; Li Y; Wu Y; Yan H; Ji X Bioorg Med Chem; 2012 Jan; 20(1):47-57. PubMed ID: 22169600 [TBL] [Abstract][Full Text] [Related]
13. Structure and activity of Yersinia pestis 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase as a novel target for the development of antiplague therapeutics. Blaszczyk J; Li Y; Cherry S; Alexandratos J; Wu Y; Shaw G; Tropea JE; Waugh DS; Yan H; Ji X Acta Crystallogr D Biol Crystallogr; 2007 Nov; 63(Pt 11):1169-77. PubMed ID: 18007032 [TBL] [Abstract][Full Text] [Related]
14. A computational perspective towards the identification of promising lead molecules against 6-hydroxy-methyl dihydropterin pyrophosphokinase (HPPK) from Bhati SK; Jain M; Muthukumaran J; Singh AK J Biomol Struct Dyn; 2024 Sep; 42(14):7432-7441. PubMed ID: 37490027 [No Abstract] [Full Text] [Related]
15. Hamiltonian replica exchange method study of Escherichia coli and Yersinia pestis HPPK. Su L; Cukier RI J Phys Chem B; 2009 Dec; 113(50):16197-208. PubMed ID: 19924845 [TBL] [Abstract][Full Text] [Related]
16. Dynamics of the conformational transitions in the assembling of the Michaelis complex of a bisubstrate enzyme: a (15)N relaxation study of Escherichia coli 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase. Lescop E; Lu Z; Liu Q; Xu H; Li G; Xia B; Yan H; Jin C Biochemistry; 2009 Jan; 48(2):302-12. PubMed ID: 19108643 [TBL] [Abstract][Full Text] [Related]
17. The structure and mechanism of 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase. Derrick JP Vitam Horm; 2008; 79():411-33. PubMed ID: 18804704 [TBL] [Abstract][Full Text] [Related]
18. Loop conformation and dynamics of the Escherichia coli HPPK apo-enzyme and its binary complex with MgATP. Yang R; Lee MC; Yan H; Duan Y Biophys J; 2005 Jul; 89(1):95-106. PubMed ID: 15821168 [TBL] [Abstract][Full Text] [Related]
19. Crystal structure analysis, covalent docking, and molecular dynamics calculations reveal a conformational switch in PhaZ7 PHB depolymerase. Kellici TF; Mavromoustakos T; Jendrossek D; Papageorgiou AC Proteins; 2017 Jul; 85(7):1351-1361. PubMed ID: 28370478 [TBL] [Abstract][Full Text] [Related]
20. Ginger (Zingiber officinale) phytochemicals-gingerenone-A and shogaol inhibit SaHPPK: molecular docking, molecular dynamics simulations and in vitro approaches. Rampogu S; Baek A; Gajula RG; Zeb A; Bavi RS; Kumar R; Kim Y; Kwon YJ; Lee KW Ann Clin Microbiol Antimicrob; 2018 Apr; 17(1):16. PubMed ID: 29609660 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]