These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
265 related articles for article (PubMed ID: 27845185)
1. Interfacial assembly at silver nanoparticle enhances the antibacterial efficacy of nisin. Arakha M; Borah SM; Saleem M; Jha AN; Jha S Free Radic Biol Med; 2016 Dec; 101():434-445. PubMed ID: 27845185 [TBL] [Abstract][Full Text] [Related]
2. Synergistic antibacterial effects of curcumin modified silver nanoparticles through ROS-mediated pathways. Song Z; Wu Y; Wang H; Han H Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():255-263. PubMed ID: 30889699 [TBL] [Abstract][Full Text] [Related]
3. Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticle-bacteria interface. Arakha M; Pal S; Samantarrai D; Panigrahi TK; Mallick BC; Pramanik K; Mallick B; Jha S Sci Rep; 2015 Oct; 5():14813. PubMed ID: 26437582 [TBL] [Abstract][Full Text] [Related]
4. Preparation of graphene oxide-silver nanoparticle nanohybrids with highly antibacterial capability. Zhu Z; Su M; Ma L; Ma L; Liu D; Wang Z Talanta; 2013 Dec; 117():449-55. PubMed ID: 24209367 [TBL] [Abstract][Full Text] [Related]
5. Developing Antibacterial Nanocrystalline Cellulose Using Natural Antibacterial Agents. Tavakolian M; Okshevsky M; van de Ven TGM; Tufenkji N ACS Appl Mater Interfaces; 2018 Oct; 10(40):33827-33838. PubMed ID: 30207684 [TBL] [Abstract][Full Text] [Related]
6. Silver nanoparticles as an antimicrobial agent: A case study on Staphylococcus aureus and Escherichia coli as models for Gram-positive and Gram-negative bacteria. Gomaa EZ J Gen Appl Microbiol; 2017 Mar; 63(1):36-43. PubMed ID: 28123131 [TBL] [Abstract][Full Text] [Related]
7. Antibacterial activity of graphene supported FeAg bimetallic nanocomposites. Ahmad A; Qureshi AS; Li L; Bao J; Jia X; Xu Y; Guo X Colloids Surf B Biointerfaces; 2016 Jul; 143():490-498. PubMed ID: 27038914 [TBL] [Abstract][Full Text] [Related]
8. Preparation of melamine sponge decorated with silver nanoparticles-modified graphene for water disinfection. Deng CH; Gong JL; Zhang P; Zeng GM; Song B; Liu HY J Colloid Interface Sci; 2017 Feb; 488():26-38. PubMed ID: 27821337 [TBL] [Abstract][Full Text] [Related]
9. Bacterial effects and protein corona evaluations: crucial ignored factors in the prediction of bio-efficacy of various forms of silver nanoparticles. Ashkarran AA; Ghavami M; Aghaverdi H; Stroeve P; Mahmoudi M Chem Res Toxicol; 2012 Jun; 25(6):1231-42. PubMed ID: 22551528 [TBL] [Abstract][Full Text] [Related]
10. Dual antibacterial mechanisms of nisin Z against Gram-positive and Gram-negative bacteria. Kuwano K; Tanaka N; Shimizu T; Nagatoshi K; Nou S; Sonomoto K Int J Antimicrob Agents; 2005 Nov; 26(5):396-402. PubMed ID: 16226432 [TBL] [Abstract][Full Text] [Related]
11. Nanocrystalline silver supported on activated carbon matrix from hydrosol: antibacterial mechanism under prolonged incubation conditions. Pal S; Tak YK; Joardar J; Kim W; Lee JE; Han MS; Song JM J Nanosci Nanotechnol; 2009 Mar; 9(3):2092-103. PubMed ID: 19435087 [TBL] [Abstract][Full Text] [Related]
12. Antibacterial activity and cytotoxicity of novel silkworm-like nisin@PEGylated MoS Wang P; Wang H; Zhao X; Li L; Chen M; Cheng J; Liu J; Li X Colloids Surf B Biointerfaces; 2019 Nov; 183():110491. PubMed ID: 31518956 [TBL] [Abstract][Full Text] [Related]
13. A Synergistic New Approach Toward Enhanced Antibacterial Efficacy via Antimicrobial Peptide Immobilization on a Nitric Oxide-Releasing Surface. Mondal A; Singha P; Douglass M; Estes L; Garren M; Griffin L; Kumar A; Handa H ACS Appl Mater Interfaces; 2021 Sep; 13(37):43892-43903. PubMed ID: 34516076 [TBL] [Abstract][Full Text] [Related]
14. Bio-fabricated silver nanoparticles preferentially targets Gram positive depending on cell surface charge. Mandal D; Kumar Dash S; Das B; Chattopadhyay S; Ghosh T; Das D; Roy S Biomed Pharmacother; 2016 Oct; 83():548-558. PubMed ID: 27449536 [TBL] [Abstract][Full Text] [Related]
15. Silver decorated copper oxide (Ag@CuO) nanocomposite enhances ROS-mediated bacterial architecture collapse. Kung ML; Tai MH; Lin PY; Wu DC; Wu WJ; Yeh BW; Hung HS; Kuo CH; Chen YW; Hsieh SL; Hsieh S Colloids Surf B Biointerfaces; 2017 Jul; 155():399-407. PubMed ID: 28460302 [TBL] [Abstract][Full Text] [Related]
16. Effects of Silver Nanoparticles on Multiple Drug-Resistant Strains of Staphylococcus aureus and Pseudomonas aeruginosa from Mastitis-Infected Goats: An Alternative Approach for Antimicrobial Therapy. Yuan YG; Peng QL; Gurunathan S Int J Mol Sci; 2017 Mar; 18(3):. PubMed ID: 28272303 [TBL] [Abstract][Full Text] [Related]
17. The effect of silver nanoparticles on the antimicrobial activity of cloned nisin against extensively drug-resistant Acinetobacter baumannii". Ahmed MS; Abdulrahman ZFA; Taha ZMA J Infect Public Health; 2024 Sep; 17(9):102501. PubMed ID: 39126907 [TBL] [Abstract][Full Text] [Related]
18. Antibacterial activity and mechanism of Ag-ZnO nanocomposite on S. aureus and GFP-expressing antibiotic resistant E. coli. Matai I; Sachdev A; Dubey P; Kumar SU; Bhushan B; Gopinath P Colloids Surf B Biointerfaces; 2014 Mar; 115():359-67. PubMed ID: 24412348 [TBL] [Abstract][Full Text] [Related]
19. Preparation of extra-small nisin nanoparticles for enhanced antibacterial activity after autoclave treatment. Chang R; Lu H; Li M; Zhang S; Xiong L; Sun Q Food Chem; 2018 Apr; 245():756-760. PubMed ID: 29287437 [TBL] [Abstract][Full Text] [Related]
20. The effects of interfacial potential on antimicrobial propensity of ZnO nanoparticle. Arakha M; Saleem M; Mallick BC; Jha S Sci Rep; 2015 Apr; 5():9578. PubMed ID: 25873247 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]