These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

530 related articles for article (PubMed ID: 27845350)

  • 1. Tunable graphene-based mid-infrared plasmonic wide-angle narrowband perfect absorber.
    Li H; Wang L; Zhai X
    Sci Rep; 2016 Nov; 6():36651. PubMed ID: 27845350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tunable graphene-based plasmonic multispectral and narrowband perfect metamaterial absorbers at the mid-infrared region.
    Meng H; Wang L; Liu G; Xue X; Lin Q; Zhai X
    Appl Opt; 2017 Jul; 56(21):6022-6027. PubMed ID: 29047925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Near-absolute polarization insensitivity in grapheme based ultra-narrowband perfect visible light absorber.
    Yildirim DU; Ghobadi A; Ozbay E
    Sci Rep; 2018 Oct; 8(1):15210. PubMed ID: 30315189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Simple Structure for an Independently Tunable Infrared Absorber Based on a Non-Concentric Graphene Nanodisk.
    Yu K; Shen P; Zhang W; Xiong X; Zhang J; Liu Y
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene-based dual-band independently tunable infrared absorber.
    Sun P; You C; Mahigir A; Liu T; Xia F; Kong W; Veronis G; Dowling JP; Dong L; Yun M
    Nanoscale; 2018 Aug; 10(33):15564-15570. PubMed ID: 30088500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual-band wide-angle perfect absorber based on the relative displacement of graphene nanoribbons in the mid-infrared range.
    Ziaee Bideskan M; Habibzadeh-Sharif A; Eskandari M
    Opt Express; 2022 Sep; 30(20):35698-35711. PubMed ID: 36258515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graphene-based tunable ultra-narrowband mid-infrared TE-polarization absorber.
    Liao YL; Zhao Y
    Opt Express; 2017 Dec; 25(25):32080-32089. PubMed ID: 29245873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Section 1Tunable broadband terahertz absorbers based on multiple layers of graphene ribbons.
    Chen D; Yang J; Zhang J; Huang J; Zhang Z
    Sci Rep; 2017 Nov; 7(1):15836. PubMed ID: 29158569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tunable dual-band terahertz absorber with all-dielectric configuration based on graphene.
    Cai Y; Guo Y; Zhou Y; Huang X; Yang G; Zhu J
    Opt Express; 2020 Oct; 28(21):31524-31534. PubMed ID: 33115124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Narrow Dual-Band Monolayer Unpatterned Graphene-Based Perfect Absorber with Critical Coupling in the Near Infrared.
    Wu P; Chen Z; Xu D; Zhang C; Jian R
    Micromachines (Basel); 2020 Jan; 11(1):. PubMed ID: 31906390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Tunable Dual-Band and Polarization-Insensitive Coherent Perfect Absorber Based on Double-Layers Graphene Hybrid Waveguide.
    Luo X; Cheng ZQ; Zhai X; Liu ZM; Li SQ; Liu JP; Wang LL; Lin Q; Zhou YH
    Nanoscale Res Lett; 2019 Nov; 14(1):337. PubMed ID: 31686268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frequency-Reconfigurable Wide-Angle Terahertz Absorbers Using Single- and Double-Layer Decussate Graphene Ribbon Arrays.
    Ye L; Zeng F; Zhang Y; Xu X; Yang X; Liu QH
    Nanomaterials (Basel); 2018 Oct; 8(10):. PubMed ID: 30322199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range.
    Ye L; Chen Y; Cai G; Liu N; Zhu J; Song Z; Liu QH
    Opt Express; 2017 May; 25(10):11223-11232. PubMed ID: 28788804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of a Tunable Ultra-Broadband Terahertz Absorber Based on Multiple Layers of Graphene Ribbons.
    Xu Z; Wu D; Liu Y; Liu C; Yu Z; Yu L; Ye H
    Nanoscale Res Lett; 2018 May; 13(1):143. PubMed ID: 29744682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A tunable wide-angle narrowband perfect absorber based on an optical cavity containing hyperbolic metamaterials.
    Xie Z; Zhu X; Deng Y; Chen Y
    Phys Chem Chem Phys; 2023 Nov; 25(42):29358-29364. PubMed ID: 37877334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A tunable ultra-broadband and ultra-high sensitivity far-infrared metamaterial absorber based on VO
    Feng H; Meng H; Wang G; Liu J; Zhang X; Li M; Yang S; Jia Y; Du H; Gao Y; Gao Y
    Phys Chem Chem Phys; 2024 May; 26(20):14919-14929. PubMed ID: 38738775
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Angle- and position-insensitive electrically tunable absorption in graphene by epsilon-near-zero effect.
    Lee S; Tran TQ; Kim M; Heo H; Heo J; Kim S
    Opt Express; 2015 Dec; 23(26):33350-8. PubMed ID: 26831999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Perfect absorber supported by optical Tamm states in plasmonic waveguide.
    Gong Y; Liu X; Lu H; Wang L; Wang G
    Opt Express; 2011 Sep; 19(19):18393-8. PubMed ID: 21935207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Refractory Ultra-Broadband Perfect Absorber from Visible to Near-Infrared.
    Gao H; Peng W; Chu S; Cui W; Liu Z; Yu L; Jing Z
    Nanomaterials (Basel); 2018 Dec; 8(12):. PubMed ID: 30545120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual band and tunable perfect absorber based on dual gratings-coupled graphene-dielectric multilayer structures.
    Zhao Y; Huang Q; Cai H; Lin X; He H; Ma T; Lu Y
    Opt Express; 2019 Feb; 27(4):5217-5229. PubMed ID: 30876123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.