BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

401 related articles for article (PubMed ID: 27845387)

  • 41. Precise correction of Duchenne muscular dystrophy exon deletion mutations by base and prime editing.
    Chemello F; Chai AC; Li H; Rodriguez-Caycedo C; Sanchez-Ortiz E; Atmanli A; Mireault AA; Liu N; Bassel-Duby R; Olson EN
    Sci Adv; 2021 Apr; 7(18):. PubMed ID: 33931459
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Large-scale genome editing based on high-capacity adenovectors and CRISPR-Cas9 nucleases rescues full-length dystrophin synthesis in DMD muscle cells.
    Tasca F; Brescia M; Wang Q; Liu J; Janssen JM; Szuhai K; Gonçalves MAFV
    Nucleic Acids Res; 2022 Jul; 50(13):7761-7782. PubMed ID: 35776127
    [TBL] [Abstract][Full Text] [Related]  

  • 43. CRISPR-Cas9 Correction of Duchenne Muscular Dystrophy in Mice by a Self-Complementary AAV Delivery System.
    Zhang Y; Bassel-Duby R; Olson EN
    Methods Mol Biol; 2023; 2587():411-425. PubMed ID: 36401041
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Selection-free precise gene repair using high-capacity adenovector delivery of advanced prime editing systems rescues dystrophin synthesis in DMD muscle cells.
    Wang Q; Capelletti S; Liu J; Janssen JM; Gonçalves MAFV
    Nucleic Acids Res; 2024 Mar; 52(5):2740-2757. PubMed ID: 38321963
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Precise correction of the dystrophin gene in duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9.
    Li HL; Fujimoto N; Sasakawa N; Shirai S; Ohkame T; Sakuma T; Tanaka M; Amano N; Watanabe A; Sakurai H; Yamamoto T; Yamanaka S; Hotta A
    Stem Cell Reports; 2015 Jan; 4(1):143-154. PubMed ID: 25434822
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Correction of diverse muscular dystrophy mutations in human engineered heart muscle by single-site genome editing.
    Long C; Li H; Tiburcy M; Rodriguez-Caycedo C; Kyrychenko V; Zhou H; Zhang Y; Min YL; Shelton JM; Mammen PPA; Liaw NY; Zimmermann WH; Bassel-Duby R; Schneider JW; Olson EN
    Sci Adv; 2018 Jan; 4(1):eaap9004. PubMed ID: 29404407
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Single-cut genome editing restores dystrophin expression in a new mouse model of muscular dystrophy.
    Amoasii L; Long C; Li H; Mireault AA; Shelton JM; Sanchez-Ortiz E; McAnally JR; Bhattacharyya S; Schmidt F; Grimm D; Hauschka SD; Bassel-Duby R; Olson EN
    Sci Transl Med; 2017 Nov; 9(418):. PubMed ID: 29187645
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Functional correction of dystrophin actin binding domain mutations by genome editing.
    Kyrychenko V; Kyrychenko S; Tiburcy M; Shelton JM; Long C; Schneider JW; Zimmermann WH; Bassel-Duby R; Olson EN
    JCI Insight; 2017 Sep; 2(18):. PubMed ID: 28931764
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Transiently expressed CRISPR/Cas9 induces wild-type dystrophin in vitro in DMD patient myoblasts carrying duplications.
    Pini V; Mariot V; Dumonceaux J; Counsell J; O'Neill HC; Farmer S; Conti F; Muntoni F
    Sci Rep; 2022 Mar; 12(1):3756. PubMed ID: 35260651
    [TBL] [Abstract][Full Text] [Related]  

  • 50. CRISPR Correction of Duchenne Muscular Dystrophy.
    Min YL; Bassel-Duby R; Olson EN
    Annu Rev Med; 2019 Jan; 70():239-255. PubMed ID: 30379597
    [TBL] [Abstract][Full Text] [Related]  

  • 51. CRISPR/Cas9-Based Dystrophin Restoration Reveals a Novel Role for Dystrophin in Bioenergetics and Stress Resistance of Muscle Progenitors.
    Matre PR; Mu X; Wu J; Danila D; Hall MA; Kolonin MG; Darabi R; Huard J
    Stem Cells; 2019 Dec; 37(12):1615-1628. PubMed ID: 31574188
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Adenoviral vector delivery of RNA-guided CRISPR/Cas9 nuclease complexes induces targeted mutagenesis in a diverse array of human cells.
    Maggio I; Holkers M; Liu J; Janssen JM; Chen X; Gonçalves MA
    Sci Rep; 2014 May; 4():5105. PubMed ID: 24870050
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparison of dystrophin expression following gene editing and gene replacement in an aged preclinical DMD animal model.
    Bengtsson NE; Crudele JM; Klaiman JM; Halbert CL; Hauschka SD; Chamberlain JS
    Mol Ther; 2022 Jun; 30(6):2176-2185. PubMed ID: 35143959
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Prime Editing Permits the Introduction of Specific Mutations in the Gene Responsible for Duchenne Muscular Dystrophy.
    Happi Mbakam C; Rousseau J; Tremblay G; Yameogo P; Tremblay JP
    Int J Mol Sci; 2022 May; 23(11):. PubMed ID: 35682838
    [TBL] [Abstract][Full Text] [Related]  

  • 55. CRISPR-Generated Animal Models of Duchenne Muscular Dystrophy.
    Lim KRQ; Nguyen Q; Dzierlega K; Huang Y; Yokota T
    Genes (Basel); 2020 Mar; 11(3):. PubMed ID: 32213923
    [TBL] [Abstract][Full Text] [Related]  

  • 56. CRISPR-Cas9 Gene Therapy for Duchenne Muscular Dystrophy.
    Happi Mbakam C; Lamothe G; Tremblay G; Tremblay JP
    Neurotherapeutics; 2022 Apr; 19(3):931-941. PubMed ID: 35165856
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy.
    Amoasii L; Hildyard JCW; Li H; Sanchez-Ortiz E; Mireault A; Caballero D; Harron R; Stathopoulou TR; Massey C; Shelton JM; Bassel-Duby R; Piercy RJ; Olson EN
    Science; 2018 Oct; 362(6410):86-91. PubMed ID: 30166439
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Exon Snipping in Duchenne Muscular Dystrophy.
    Kemaladewi DU; Cohn RD
    Trends Mol Med; 2016 Mar; 22(3):187-189. PubMed ID: 26856237
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Age-Dependent Echocardiographic and Pathologic Findings in a Rat Model with Duchenne Muscular Dystrophy Generated by CRISPR/Cas9 Genome Editing.
    Sugihara H; Kimura K; Yamanouchi K; Teramoto N; Okano T; Daimon M; Morita H; Takenaka K; Shiga T; Tanihata J; Aoki Y; Inoue-Nagamura T; Yotsuyanagi H; Komuro I
    Int Heart J; 2020 Nov; 61(6):1279-1284. PubMed ID: 33191355
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Transduction of myogenic cells by retargeted dual high-capacity hybrid viral vectors: robust dystrophin synthesis in duchenne muscular dystrophy muscle cells.
    Gonçalves MA; Holkers M; Cudré-Mauroux C; van Nierop GP; Knaän-Shanzer S; van der Velde I; Valerio D; de Vries AA
    Mol Ther; 2006 May; 13(5):976-86. PubMed ID: 16443396
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.