BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

401 related articles for article (PubMed ID: 27845387)

  • 81. Triple trans-splicing adeno-associated virus vectors capable of transferring the coding sequence for full-length dystrophin protein into dystrophic mice.
    Koo T; Popplewell L; Athanasopoulos T; Dickson G
    Hum Gene Ther; 2014 Feb; 25(2):98-108. PubMed ID: 24191945
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Applications of CRISPR/Cas9 for the Treatment of Duchenne Muscular Dystrophy.
    Lim KRQ; Yoon C; Yokota T
    J Pers Med; 2018 Nov; 8(4):. PubMed ID: 30477208
    [TBL] [Abstract][Full Text] [Related]  

  • 83. CRISPR/Cas9 Technology in Restoring Dystrophin Expression in iPSC-Derived Muscle Progenitors.
    Jin Y; Shen Y; Su X; Weintraub N; Tang Y
    J Vis Exp; 2019 Sep; (151):. PubMed ID: 31566614
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Promising therapeutic approaches using CRISPR/Cas9 genome editing technology in the treatment of Duchenne muscular dystrophy.
    Mollanoori H; Rahmati Y; Hassani B; Havasi Mehr M; Teimourian S
    Genes Dis; 2021 Mar; 8(2):146-156. PubMed ID: 33997161
    [TBL] [Abstract][Full Text] [Related]  

  • 85. CRISPR applications for Duchenne muscular dystrophy: From animal models to potential therapies.
    Chey YCJ; Arudkumar J; Aartsma-Rus A; Adikusuma F; Thomas PQ
    WIREs Mech Dis; 2023 Jan; 15(1):e1580. PubMed ID: 35909075
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Generation of muscular dystrophy model rats with a CRISPR/Cas system.
    Nakamura K; Fujii W; Tsuboi M; Tanihata J; Teramoto N; Takeuchi S; Naito K; Yamanouchi K; Nishihara M
    Sci Rep; 2014 Jul; 4():5635. PubMed ID: 25005781
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Efficient precise in vivo base editing in adult dystrophic mice.
    Xu L; Zhang C; Li H; Wang P; Gao Y; Mokadam NA; Ma J; Arnold WD; Han R
    Nat Commun; 2021 Jun; 12(1):3719. PubMed ID: 34140489
    [TBL] [Abstract][Full Text] [Related]  

  • 88. A consolidated AAV system for single-cut CRISPR correction of a common Duchenne muscular dystrophy mutation.
    Zhang Y; Nishiyama T; Li H; Huang J; Atmanli A; Sanchez-Ortiz E; Wang Z; Mireault AA; Mammen PPA; Bassel-Duby R; Olson EN
    Mol Ther Methods Clin Dev; 2021 Sep; 22():122-132. PubMed ID: 34485599
    [TBL] [Abstract][Full Text] [Related]  

  • 89. [From gene to disease; the dystrophin gene involved in Duchenne and Becker muscular dystrophy].
    den Dunnen JT; de Visser M; Bakker E
    Ned Tijdschr Geneeskd; 2002 Feb; 146(8):364-7. PubMed ID: 11887623
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Functional disruption of the dystrophin gene in rhesus monkey using CRISPR/Cas9.
    Chen Y; Zheng Y; Kang Y; Yang W; Niu Y; Guo X; Tu Z; Si C; Wang H; Xing R; Pu X; Yang SH; Li S; Ji W; Li XJ
    Hum Mol Genet; 2015 Jul; 24(13):3764-74. PubMed ID: 25859012
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Duchenne muscular dystrophy cell culture models created by CRISPR/Cas9 gene editing and their application in drug screening.
    Soblechero-Martín P; Albiasu-Arteta E; Anton-Martinez A; de la Puente-Ovejero L; Garcia-Jimenez I; González-Iglesias G; Larrañaga-Aiestaran I; López-Martínez A; Poyatos-García J; Ruiz-Del-Yerro E; Gonzalez F; Arechavala-Gomeza V
    Sci Rep; 2021 Sep; 11(1):18188. PubMed ID: 34521928
    [TBL] [Abstract][Full Text] [Related]  

  • 92. [Mutation-specific treatments for Duchenne muscular dystrophy].
    Matsuo M; Takeshima Y
    Brain Nerve; 2009 Aug; 61(8):915-22. PubMed ID: 19697880
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Therapeutic potential of combined viral transduction and CRISPR/Cas9 gene editing in treating neurodegenerative diseases.
    Kuruvilla J; Sasmita AO; Ling APK
    Neurol Sci; 2018 Nov; 39(11):1827-1835. PubMed ID: 30076486
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Correction of muscular dystrophies by CRISPR gene editing.
    Chemello F; Bassel-Duby R; Olson EN
    J Clin Invest; 2020 Jun; 130(6):2766-2776. PubMed ID: 32478678
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Common therapeutic advances for Duchenne muscular dystrophy (DMD).
    Salmaninejad A; Jafari Abarghan Y; Bozorg Qomi S; Bayat H; Yousefi M; Azhdari S; Talebi S; Mojarrad M
    Int J Neurosci; 2021 Apr; 131(4):370-389. PubMed ID: 32241218
    [No Abstract]   [Full Text] [Related]  

  • 96. Pig models for Duchenne muscular dystrophy - from disease mechanisms to validation of new diagnostic and therapeutic concepts.
    Stirm M; Fonteyne LM; Shashikadze B; Stöckl JB; Kurome M; Keßler B; Zakhartchenko V; Kemter E; Blum H; Arnold GJ; Matiasek K; Wanke R; Wurst W; Nagashima H; Knieling F; Walter MC; Kupatt C; Fröhlich T; Klymiuk N; Blutke A; Wolf E
    Neuromuscul Disord; 2022 Jul; 32(7):543-556. PubMed ID: 35659494
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Contributions of Japanese patients to development of antisense therapy for DMD.
    Matsuo M; Takeshima Y; Nishio H
    Brain Dev; 2016 Jan; 38(1):4-9. PubMed ID: 26094594
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Bioinformatic and functional optimization of antisense phosphorodiamidate morpholino oligomers (PMOs) for therapeutic modulation of RNA splicing in muscle.
    Popplewell LJ; Graham IR; Malerba A; Dickson G
    Methods Mol Biol; 2011; 709():153-78. PubMed ID: 21194027
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Strand bias in oligonucleotide-mediated dystrophin gene editing.
    Bertoni C; Morris GE; Rando TA
    Hum Mol Genet; 2005 Jan; 14(2):221-33. PubMed ID: 15563511
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Serum extracellular vesicles for delivery of CRISPR-CAS9 ribonucleoproteins to modify the dystrophin gene.
    Majeau N; Fortin-Archambault A; Gérard C; Rousseau J; Yaméogo P; Tremblay JP
    Mol Ther; 2022 Jul; 30(7):2429-2442. PubMed ID: 35619556
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.