BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

403 related articles for article (PubMed ID: 27845387)

  • 101. Serum extracellular vesicles for delivery of CRISPR-CAS9 ribonucleoproteins to modify the dystrophin gene.
    Majeau N; Fortin-Archambault A; Gérard C; Rousseau J; Yaméogo P; Tremblay JP
    Mol Ther; 2022 Jul; 30(7):2429-2442. PubMed ID: 35619556
    [TBL] [Abstract][Full Text] [Related]  

  • 102. Deletion of Dystrophin In-Frame Exon 5 Leads to a Severe Phenotype: Guidance for Exon Skipping Strategies.
    Toh ZY; Thandar Aung-Htut M; Pinniger G; Adams AM; Krishnaswarmy S; Wong BL; Fletcher S; Wilton SD
    PLoS One; 2016; 11(1):e0145620. PubMed ID: 26745801
    [TBL] [Abstract][Full Text] [Related]  

  • 103. Cas9-specific immune responses compromise local and systemic AAV CRISPR therapy in multiple dystrophic canine models.
    Hakim CH; Kumar SRP; Pérez-López DO; Wasala NB; Zhang D; Yue Y; Teixeira J; Pan X; Zhang K; Million ED; Nelson CE; Metzger S; Han J; Louderman JA; Schmidt F; Feng F; Grimm D; Smith BF; Yao G; Yang NN; Gersbach CA; Chen SJ; Herzog RW; Duan D
    Nat Commun; 2021 Nov; 12(1):6769. PubMed ID: 34819506
    [TBL] [Abstract][Full Text] [Related]  

  • 104. Long-term maintenance of dystrophin expression and resistance to injury of skeletal muscle in gene edited DMD mice.
    Karri DR; Zhang Y; Chemello F; Min YL; Huang J; Kim J; Mammen PPA; Xu L; Liu N; Bassel-Duby R; Olson EN
    Mol Ther Nucleic Acids; 2022 Jun; 28():154-167. PubMed ID: 35402069
    [TBL] [Abstract][Full Text] [Related]  

  • 105. Variable phenotype of del45-55 Becker patients correlated with nNOSμ mislocalization and RYR1 hypernitrosylation.
    Gentil C; Leturcq F; Ben Yaou R; Kaplan JC; Laforet P; Pénisson-Besnier I; Espil-Taris C; Voit T; Garcia L; Piétri-Rouxel F
    Hum Mol Genet; 2012 Aug; 21(15):3449-60. PubMed ID: 22589245
    [TBL] [Abstract][Full Text] [Related]  

  • 106. Imprecision Medicine: A One-Size-Fits-Many Approach for Muscle Dystrophy.
    Breitbart A; Murry CE
    Cell Stem Cell; 2016 Apr; 18(4):423-4. PubMed ID: 27058929
    [TBL] [Abstract][Full Text] [Related]  

  • 107. CRISPR-Cas9 correction in the DMD mouse model is accompanied by upregulation of Dp71f protein.
    Egorova TV; Polikarpova AV; Vassilieva SG; Dzhenkova MA; Savchenko IM; Velyaev OA; Shmidt AA; Soldatov VO; Pokrovskii MV; Deykin AV; Bardina MV
    Mol Ther Methods Clin Dev; 2023 Sep; 30():161-180. PubMed ID: 37457303
    [TBL] [Abstract][Full Text] [Related]  

  • 108. Multiexon skipping leading to an artificial DMD protein lacking amino acids from exons 45 through 55 could rescue up to 63% of patients with Duchenne muscular dystrophy.
    Béroud C; Tuffery-Giraud S; Matsuo M; Hamroun D; Humbertclaude V; Monnier N; Moizard MP; Voelckel MA; Calemard LM; Boisseau P; Blayau M; Philippe C; Cossée M; Pagès M; Rivier F; Danos O; Garcia L; Claustres M
    Hum Mutat; 2007 Feb; 28(2):196-202. PubMed ID: 17041910
    [TBL] [Abstract][Full Text] [Related]  

  • 109. A humanized knockin mouse model of Duchenne muscular dystrophy and its correction by CRISPR-Cas9 therapeutic gene editing.
    Zhang Y; Li H; Nishiyama T; McAnally JR; Sanchez-Ortiz E; Huang J; Mammen PPA; Bassel-Duby R; Olson EN
    Mol Ther Nucleic Acids; 2022 Sep; 29():525-537. PubMed ID: 36035749
    [TBL] [Abstract][Full Text] [Related]  

  • 110. Targeted genome editing in vivo corrects a Dmd duplication restoring wild-type dystrophin expression.
    Maino E; Wojtal D; Evagelou SL; Farheen A; Wong TWY; Lindsay K; Scott O; Rizvi SZ; Hyatt E; Rok M; Visuvanathan S; Chiodo A; Schneeweiss M; Ivakine EA; Cohn RD
    EMBO Mol Med; 2021 May; 13(5):e13228. PubMed ID: 33724658
    [TBL] [Abstract][Full Text] [Related]  

  • 111. Exon-skipping therapy for Duchenne muscular dystrophy.
    Nakamura A; Takeda S
    Neuropathology; 2009 Aug; 29(4):494-501. PubMed ID: 19486303
    [TBL] [Abstract][Full Text] [Related]  

  • 112. Adeno-Associated Virus-Mediated Delivery of CRISPR for Cardiac Gene Editing in Mice.
    Xu L; Gao Y; Lau YS; Han R
    J Vis Exp; 2018 Aug; (138):. PubMed ID: 30124643
    [TBL] [Abstract][Full Text] [Related]  

  • 113. Genetic therapeutic approaches for Duchenne muscular dystrophy.
    Foster H; Popplewell L; Dickson G
    Hum Gene Ther; 2012 Jul; 23(7):676-87. PubMed ID: 22647146
    [TBL] [Abstract][Full Text] [Related]  

  • 114. Low immunogenicity of LNP allows repeated administrations of CRISPR-Cas9 mRNA into skeletal muscle in mice.
    Kenjo E; Hozumi H; Makita Y; Iwabuchi KA; Fujimoto N; Matsumoto S; Kimura M; Amano Y; Ifuku M; Naoe Y; Inukai N; Hotta A
    Nat Commun; 2021 Dec; 12(1):7101. PubMed ID: 34880218
    [TBL] [Abstract][Full Text] [Related]  

  • 115. In Vivo Modeling of Skeletal Muscle Diseases Using the CRISPR/Cas9 System in Rats.
    Nakamura K; Tanaka T; Yamanouchi K
    Methods Mol Biol; 2023; 2640():277-285. PubMed ID: 36995602
    [TBL] [Abstract][Full Text] [Related]  

  • 116. Mini-dCas13X-mediated RNA editing restores dystrophin expression in a humanized mouse model of Duchenne muscular dystrophy.
    Li G; Jin M; Li Z; Xiao Q; Lin J; Yang D; Liu Y; Wang X; Xie L; Ying W; Wang H; Zuo E; Shi L; Wang N; Chen W; Xu C; Yang H
    J Clin Invest; 2023 Feb; 133(3):. PubMed ID: 36512423
    [TBL] [Abstract][Full Text] [Related]  

  • 117. Cellular Reprogramming, Genome Editing, and Alternative CRISPR Cas9 Technologies for Precise Gene Therapy of Duchenne Muscular Dystrophy.
    Gee P; Xu H; Hotta A
    Stem Cells Int; 2017; 2017():8765154. PubMed ID: 28607562
    [TBL] [Abstract][Full Text] [Related]  

  • 118. Sustained muscle expression of dystrophin from a high-capacity adenoviral vector with systemic gene transfer of T cell costimulatory blockade.
    Jiang Z; Schiedner G; van Rooijen N; Liu CC; Kochanek S; Clemens PR
    Mol Ther; 2004 Oct; 10(4):688-96. PubMed ID: 15451453
    [TBL] [Abstract][Full Text] [Related]  

  • 119. Recombinant truncated dystrophin minigenes: construction, expression, and adenoviral delivery.
    Clemens PR; Krause TL; Chan S; Korb KE; Graham FL; Caskey CT
    Hum Gene Ther; 1995 Nov; 6(11):1477-85. PubMed ID: 8573620
    [TBL] [Abstract][Full Text] [Related]  

  • 120. Differential effects of dystrophin and utrophin gene transfer in immunocompetent muscular dystrophy (mdx) mice.
    Ebihara S; Guibinga GH; Gilbert R; Nalbantoglu J; Massie B; Karpati G; Petrof BJ
    Physiol Genomics; 2000 Sep; 3(3):133-44. PubMed ID: 11015608
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.