These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 27845669)

  • 21. Integration of 198 ChIP-seq datasets reveals human cis-regulatory regions.
    Bolouri H; Ruzzo WL
    J Comput Biol; 2012 Sep; 19(9):989-97. PubMed ID: 22897152
    [TBL] [Abstract][Full Text] [Related]  

  • 22. ChiLin: a comprehensive ChIP-seq and DNase-seq quality control and analysis pipeline.
    Qin Q; Mei S; Wu Q; Sun H; Li L; Taing L; Chen S; Li F; Liu T; Zang C; Xu H; Chen Y; Meyer CA; Zhang Y; Brown M; Long HW; Liu XS
    BMC Bioinformatics; 2016 Oct; 17(1):404. PubMed ID: 27716038
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Defining bacterial regulons using ChIP-seq.
    Myers KS; Park DM; Beauchene NA; Kiley PJ
    Methods; 2015 Sep; 86():80-8. PubMed ID: 26032817
    [TBL] [Abstract][Full Text] [Related]  

  • 24. ChIP-BIT: Bayesian inference of target genes using a novel joint probabilistic model of ChIP-seq profiles.
    Chen X; Jung JG; Shajahan-Haq AN; Clarke R; Shih IeM; Wang Y; Magnani L; Wang TL; Xuan J
    Nucleic Acids Res; 2016 Apr; 44(7):e65. PubMed ID: 26704972
    [TBL] [Abstract][Full Text] [Related]  

  • 25. ChIP-Seq Data Analysis to Define Transcriptional Regulatory Networks.
    Pavesi G
    Adv Biochem Eng Biotechnol; 2017; 160():1-14. PubMed ID: 28070596
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Argo_CUDA: Exhaustive GPU based approach for motif discovery in large DNA datasets.
    Vishnevsky OV; Bocharnikov AV; Kolchanov NA
    J Bioinform Comput Biol; 2018 Feb; 16(1):1740012. PubMed ID: 29281953
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Non-targeted transcription factors motifs are a systemic component of ChIP-seq datasets.
    Worsley Hunt R; Wasserman WW
    Genome Biol; 2014 Jul; 15(7):412. PubMed ID: 25070602
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Probabilistic Inference on Multiple Normalized Genome-Wide Signal Profiles With Model Regularization.
    Wong KC; Peng C; Yan S; Liang C
    IEEE Trans Nanobioscience; 2017 Jan; 16(1):43-50. PubMed ID: 27893398
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A statistical framework for power calculations in ChIP-seq experiments.
    Zuo C; Keleş S
    Bioinformatics; 2014 Mar; 30(6):753-60. PubMed ID: 23665773
    [TBL] [Abstract][Full Text] [Related]  

  • 30. ChIPXpress: using publicly available gene expression data to improve ChIP-seq and ChIP-chip target gene ranking.
    Wu G; Ji H
    BMC Bioinformatics; 2013 Jun; 14():188. PubMed ID: 23758851
    [TBL] [Abstract][Full Text] [Related]  

  • 31. On the problem of confounders in modeling gene expression.
    Schmidt F; Schulz MH
    Bioinformatics; 2019 Feb; 35(4):711-719. PubMed ID: 30084962
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An integrated software system for analyzing ChIP-chip and ChIP-seq data.
    Ji H; Jiang H; Ma W; Johnson DS; Myers RM; Wong WH
    Nat Biotechnol; 2008 Nov; 26(11):1293-300. PubMed ID: 18978777
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modeling ChIP sequencing in silico with applications.
    Zhang ZD; Rozowsky J; Snyder M; Chang J; Gerstein M
    PLoS Comput Biol; 2008 Aug; 4(8):e1000158. PubMed ID: 18725927
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Learning position weight matrices from sequence and expression data.
    Chen X; Guo L; Fan Z; Jiang T
    Comput Syst Bioinformatics Conf; 2007; 6():249-60. PubMed ID: 17951829
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Imputation for transcription factor binding predictions based on deep learning.
    Qin Q; Feng J
    PLoS Comput Biol; 2017 Feb; 13(2):e1005403. PubMed ID: 28234893
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bayesian hierarchical model for transcriptional module discovery by jointly modeling gene expression and ChIP-chip data.
    Liu X; Jessen WJ; Sivaganesan S; Aronow BJ; Medvedovic M
    BMC Bioinformatics; 2007 Aug; 8():283. PubMed ID: 17683565
    [TBL] [Abstract][Full Text] [Related]  

  • 37. From binding motifs in ChIP-Seq data to improved models of transcription factor binding sites.
    Kulakovskiy I; Levitsky V; Oshchepkov D; Bryzgalov L; Vorontsov I; Makeev V
    J Bioinform Comput Biol; 2013 Feb; 11(1):1340004. PubMed ID: 23427986
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A practical comparison of methods for detecting transcription factor binding sites in ChIP-seq experiments.
    Laajala TD; Raghav S; Tuomela S; Lahesmaa R; Aittokallio T; Elo LL
    BMC Genomics; 2009 Dec; 10():618. PubMed ID: 20017957
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sensitive and robust assessment of ChIP-seq read distribution using a strand-shift profile.
    Nakato R; Shirahige K
    Bioinformatics; 2018 Jul; 34(14):2356-2363. PubMed ID: 29528371
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Application of topic models to a compendium of ChIP-Seq datasets uncovers recurrent transcriptional regulatory modules.
    Yang G; Ma A; Qin ZS; Chen L
    Bioinformatics; 2020 Apr; 36(8):2352-2358. PubMed ID: 31899481
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.