These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 27845714)
1. Beyond Focal Pests: Impact of a Neonicotinoid Seed Treatment and Resistant Soybean Lines on a Non-Target Arthropod. Özsisli T; Prischmann-Voldseth DA Insects; 2016 Nov; 7(4):. PubMed ID: 27845714 [TBL] [Abstract][Full Text] [Related]
2. Influence of a Neonicotinoid Seed Treatment on a Nontarget Herbivore of Soybean (Twospotted Spider Mite) and Diet Switching by a Co-occurring Omnivore (Western Flower Thrips). Brenner R; Prischmann-Voldseth DA Environ Entomol; 2020 Apr; 49(2):461-472. PubMed ID: 32078674 [TBL] [Abstract][Full Text] [Related]
3. Effects of aldicarb and neonicotinoid seed treatments on twospotted spider mite on cotton. Smith JF; Catchot AL; Musser FR; Gore J J Econ Entomol; 2013 Apr; 106(2):807-15. PubMed ID: 23786068 [TBL] [Abstract][Full Text] [Related]
4. Effects of powdery mildew fungicide programs on twospotted spider mite (Acari: Tetranychidae), hop aphid (Hemiptera: Aphididae), and their natural enemies in hop yards. Gent DH; James DG; Wright LC; Brooks DJ; Barbour JD; Dreves AJ; Fisher GC; Walton VM J Econ Entomol; 2009 Feb; 102(1):274-86. PubMed ID: 19253646 [TBL] [Abstract][Full Text] [Related]
5. Modified atmosphere treatments as a potential disinfestation technique for arthropod pests in greenhouses. Held DW; Potter DA; Gates RS; Anderson RG J Econ Entomol; 2001 Apr; 94(2):430-8. PubMed ID: 11332835 [TBL] [Abstract][Full Text] [Related]
6. Effect of commercially available plant-derived essential oil products on arthropod pests. Cloyd RA; Galle CL; Keith SR; Kalscheur NA; Kemp KE J Econ Entomol; 2009 Aug; 102(4):1567-79. PubMed ID: 19736770 [TBL] [Abstract][Full Text] [Related]
7. Assessing the value and pest management window provided by neonicotinoid seed treatments for management of soybean aphid (Aphis glycines Matsumura) in the Upper Midwestern United States. Krupke CH; Alford AM; Cullen EM; Hodgson EW; Knodel JJ; McCornack B; Potter BD; Spigler MI; Tilmon K; Welch K Pest Manag Sci; 2017 Oct; 73(10):2184-2193. PubMed ID: 28459234 [TBL] [Abstract][Full Text] [Related]
8. Mulching with coffee husk and pulp in strawberry affects edaphic predatory mite and spider mite densities. de Cássia Neves Esteca F; Rodrigues LR; de Moraes GJ; Júnior ID; Klingen I Exp Appl Acarol; 2018 Oct; 76(2):161-183. PubMed ID: 30293177 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of predatory mites and Acramite for control of twospotted spider mites in strawberries in north central Florida. Rhodes EM; Liburd OE J Econ Entomol; 2006 Aug; 99(4):1291-8. PubMed ID: 16937684 [TBL] [Abstract][Full Text] [Related]
10. Control of the two-spotted spider mite (Tetranychus urticae Koch) in glasshouse roses. Blindeman L; Van Labeke MC Commun Agric Appl Biol Sci; 2003; 68(4 Pt A):249-54. PubMed ID: 15149115 [TBL] [Abstract][Full Text] [Related]
11. Plant-related factors influence the effectiveness of Neoseiulus fallacis (Acari: Phytoseiidae), a biological control agent of spider mites on landscape ornamental plants. Pratt PD; Rosetta R; Croft BA J Econ Entomol; 2002 Dec; 95(6):1135-41. PubMed ID: 12539823 [TBL] [Abstract][Full Text] [Related]
12. Some effects of pre-release host-plant on the biological control of Panonychus ulmi by the predatory mite Amblyseius fallacis. Lester PJ; Thistlewood HM; Harmsen R Exp Appl Acarol; 2000 Jan; 24(1):19-33. PubMed ID: 10823354 [TBL] [Abstract][Full Text] [Related]
13. Interactions of effects of host plant resistance and seed treatments on soybean aphid (Aphis glycines Matsumura) and soybean cyst nematode (Heterodera glycines Ichinohe). Clifton EH; Tylka GL; Gassmann AJ; Hodgson EW Pest Manag Sci; 2018 Apr; 74(4):992-1000. PubMed ID: 29160037 [TBL] [Abstract][Full Text] [Related]
14. Chemical and Non-Chemical Options for Managing Twospotted Spider Mite, Western Tarnished Plant Bug and Other Arthropod Pests in Strawberries. Dara SK; Peck D; Murray D Insects; 2018 Nov; 9(4):. PubMed ID: 30388768 [TBL] [Abstract][Full Text] [Related]
15. Pest response in packed table grapes to low temperature storage combined with slow-release sulfur dioxide pads in basic and large-scale tests. Yokoyama VY; Miller GT; Crisosto CH J Econ Entomol; 2001 Aug; 94(4):984-8. PubMed ID: 11561862 [TBL] [Abstract][Full Text] [Related]
16. Prey preference, intraguild predation and population dynamics of an arthropod food web on plants. Venzon M; Janssen A; Sabelis MW Exp Appl Acarol; 2001; 25(10-11):785-808. PubMed ID: 12455871 [TBL] [Abstract][Full Text] [Related]
17. Friend or foe?: a plant's induced response to an omnivore. Spence KO; Bicocca VT; Rosenheim JA Environ Entomol; 2007 Jun; 36(3):623-30. PubMed ID: 17540074 [TBL] [Abstract][Full Text] [Related]
18. Combining plant- and soil-dwelling predatory mites to optimise biological control of thrips. Wiethoff J; Poehling HM; Meyhöfer R Exp Appl Acarol; 2004; 34(3-4):239-61. PubMed ID: 15651523 [TBL] [Abstract][Full Text] [Related]
19. Biological control of spider mites on grape by phytoseiid mites (Acari: Tetranychidae, Phytoseiidae): emphasis on regional aspects. Prischmann DA; Croft BA; Luh HK J Econ Entomol; 2002 Apr; 95(2):340-7. PubMed ID: 12020011 [TBL] [Abstract][Full Text] [Related]
20. Phytoseiid dispersal at plant to regional levels: a review with emphasis on management of Neoseiulus fallacis in diverse agroecosystems. Croft BA; Jung C Exp Appl Acarol; 2001; 25(10-11):763-84. PubMed ID: 12455870 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]