These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 27845877)

  • 1. Substrate processing in intramembrane proteolysis by γ-secretase - the role of protein dynamics.
    Langosch D; Steiner H
    Biol Chem; 2017 Apr; 398(4):441-453. PubMed ID: 27845877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding intramembrane proteolysis: from protein dynamics to reaction kinetics.
    Langosch D; Scharnagl C; Steiner H; Lemberg MK
    Trends Biochem Sci; 2015 Jun; 40(6):318-27. PubMed ID: 25941170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural biology of intramembrane proteases: mechanistic insights from rhomboid and S2P to γ-secretase.
    Sun L; Li X; Shi Y
    Curr Opin Struct Biol; 2016 Apr; 37():97-107. PubMed ID: 26811996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The backbone dynamics of the amyloid precursor protein transmembrane helix provides a rationale for the sequential cleavage mechanism of γ-secretase.
    Pester O; Barrett PJ; Hornburg D; Hornburg P; Pröbstle R; Widmaier S; Kutzner C; Dürrbaum M; Kapurniotu A; Sanders CR; Scharnagl C; Langosch D
    J Am Chem Soc; 2013 Jan; 135(4):1317-29. PubMed ID: 23265086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiological functions of SPP/SPPL intramembrane proteases.
    Mentrup T; Cabrera-Cabrera F; Fluhrer R; Schröder B
    Cell Mol Life Sci; 2020 Aug; 77(15):2959-2979. PubMed ID: 32052089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substrate Selection Criteria in Regulated Intramembrane Proteolysis.
    Moser C; Guschtschin-Schmidt N; Silber M; Flum J; Muhle-Goll C
    ACS Chem Neurosci; 2024 Apr; 15(7):1321-1334. PubMed ID: 38525994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulating Hinge Flexibility in the APP Transmembrane Domain Alters γ-Secretase Cleavage.
    Götz A; Mylonas N; Högel P; Silber M; Heinel H; Menig S; Vogel A; Feyrer H; Huster D; Luy B; Langosch D; Scharnagl C; Muhle-Goll C; Kamp F; Steiner H
    Biophys J; 2019 Jun; 116(11):2103-2120. PubMed ID: 31130234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nicastrin functions as a gamma-secretase-substrate receptor.
    Shah S; Lee SF; Tabuchi K; Hao YH; Yu C; LaPlant Q; Ball H; Dann CE; Südhof T; Yu G
    Cell; 2005 Aug; 122(3):435-47. PubMed ID: 16096062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomic profiling of gamma-secretase substrates and mapping of substrate requirements.
    Hemming ML; Elias JE; Gygi SP; Selkoe DJ
    PLoS Biol; 2008 Oct; 6(10):e257. PubMed ID: 18942891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Building gamma-secretase: the bits and pieces.
    Spasic D; Annaert W
    J Cell Sci; 2008 Feb; 121(Pt 4):413-20. PubMed ID: 18256384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nicastrin functions to sterically hinder γ-secretase-substrate interactions driven by substrate transmembrane domain.
    Bolduc DM; Montagna DR; Gu Y; Selkoe DJ; Wolfe MS
    Proc Natl Acad Sci U S A; 2016 Feb; 113(5):E509-18. PubMed ID: 26699478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cooperation of N- and C-terminal substrate transmembrane domain segments in intramembrane proteolysis by γ-secretase.
    Werner NT; Högel P; Güner G; Stelzer W; Wozny M; Aßfalg M; Lichtenthaler SF; Steiner H; Langosch D
    Commun Biol; 2023 Feb; 6(1):177. PubMed ID: 36792683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The dynamics of γ-secretase and its substrates.
    Hitzenberger M; Götz A; Menig S; Brunschweiger B; Zacharias M; Scharnagl C
    Semin Cell Dev Biol; 2020 Sep; 105():86-101. PubMed ID: 32423851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The amyloid-beta forming tripeptide cleavage mechanism of γ-secretase.
    Bolduc DM; Montagna DR; Seghers MC; Wolfe MS; Selkoe DJ
    Elife; 2016 Aug; 5():. PubMed ID: 27580372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substrate determinants in the C99 juxtamembrane domains differentially affect γ-secretase cleavage specificity and modulator pharmacology.
    Ousson S; Saric A; Baguet A; Losberger C; Genoud S; Vilbois F; Permanne B; Hussain I; Beher D
    J Neurochem; 2013 May; 125(4):610-9. PubMed ID: 23253155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intramembrane proteolysis of β-amyloid precursor protein by γ-secretase is an unusually slow process.
    Kamp F; Winkler E; Trambauer J; Ebke A; Fluhrer R; Steiner H
    Biophys J; 2015 Mar; 108(5):1229-37. PubMed ID: 25762334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The insulin-like growth factor 1 (IGF-1) receptor is a substrate for gamma-secretase-mediated intramembrane proteolysis.
    McElroy B; Powell JC; McCarthy JV
    Biochem Biophys Res Commun; 2007 Jul; 358(4):1136-41. PubMed ID: 17524361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular mechanism of intramembrane proteolysis by γ-secretase.
    Tomita T
    J Biochem; 2014 Oct; 156(4):195-201. PubMed ID: 25108625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cleavage efficiency of the intramembrane protease γ-secretase is reduced by the palmitoylation of a substrate's transmembrane domain.
    Aßfalg M; Güner G; Müller SA; Breimann S; Langosch D; Muhle-Goll C; Frishman D; Steiner H; Lichtenthaler SF
    FASEB J; 2024 Feb; 38(2):e23442. PubMed ID: 38275103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Permissive Conformations of a Transmembrane Helix Allow Intramembrane Proteolysis by γ-Secretase.
    Ortner M; Guschtschin-Schmidt N; Stelzer W; Muhle-Goll C; Langosch D
    J Mol Biol; 2023 Sep; 435(18):168218. PubMed ID: 37536392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.