These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 27846233)

  • 1. Identification of Genes Discriminating Multiple Sclerosis Patients from Controls by Adapting a Pathway Analysis Method.
    Zhang L; Wang L; Tian P; Tian S
    PLoS One; 2016; 11(11):e0165543. PubMed ID: 27846233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving gene set analysis of microarray data by SAM-GS.
    Dinu I; Potter JD; Mueller T; Liu Q; Adewale AJ; Jhangri GS; Einecke G; Famulski KS; Halloran P; Yasui Y
    BMC Bioinformatics; 2007 Jul; 8():242. PubMed ID: 17612399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. To select relevant features for longitudinal gene expression data by extending a pathway analysis method.
    Tian S; Wang C; Chang HH
    F1000Res; 2018; 7():1166. PubMed ID: 30271585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene-set analysis and reduction.
    Dinu I; Potter JD; Mueller T; Liu Q; Adewale AJ; Jhangri GS; Einecke G; Famulski KS; Halloran P; Yasui Y
    Brief Bioinform; 2009 Jan; 10(1):24-34. PubMed ID: 18836208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A longitudinal feature selection method identifies relevant genes to distinguish complicated injury and uncomplicated injury over time.
    Tian S; Wang C; Chang HH
    BMC Med Inform Decis Mak; 2018 Dec; 18(Suppl 5):115. PubMed ID: 30526581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Weighted-SAMGSR: combining significance analysis of microarray-gene set reduction algorithm with pathway topology-based weights to select relevant genes.
    Tian S; Chang HH; Wang C
    Biol Direct; 2016 Sep; 11(1):50. PubMed ID: 27681389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feature selection and nearest centroid classification for protein mass spectrometry.
    Levner I
    BMC Bioinformatics; 2005 Mar; 6():68. PubMed ID: 15788095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graph-based unsupervised feature selection and multiview clustering for microarray data.
    Swarnkar T; Mitra P
    J Biosci; 2015 Oct; 40(4):755-67. PubMed ID: 26564977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Considerations when using the significance analysis of microarrays (SAM) algorithm.
    Larsson O; Wahlestedt C; Timmons JA
    BMC Bioinformatics; 2005 May; 6():129. PubMed ID: 15921534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of genetic algorithms and constructive neural networks for the analysis of microarray cancer data.
    Luque-Baena RM; Urda D; Subirats JL; Franco L; Jerez JM
    Theor Biol Med Model; 2014 May; 11 Suppl 1(Suppl 1):S7. PubMed ID: 25077572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mining gene expression data of multiple sclerosis.
    Guo P; Zhang Q; Zhu Z; Huang Z; Li K
    PLoS One; 2014; 9(6):e100052. PubMed ID: 24932510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comprehensive evaluation of SAM, the SAM R-package and a simple modification to improve its performance.
    Zhang S
    BMC Bioinformatics; 2007 Jun; 8():230. PubMed ID: 17603887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kernel-imbedded Gaussian processes for disease classification using microarray gene expression data.
    Zhao X; Cheung LW
    BMC Bioinformatics; 2007 Feb; 8():67. PubMed ID: 17328811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finding consistent disease subnetworks across microarray datasets.
    Soh D; Dong D; Guo Y; Wong L
    BMC Bioinformatics; 2011; 12 Suppl 13(Suppl 13):S15. PubMed ID: 22372958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of suitable genes contributes to lung adenocarcinoma clustering by multiple meta-analysis methods.
    Yang ZH; Zheng R; Gao Y; Zhang Q
    Clin Respir J; 2016 Sep; 10(5):631-46. PubMed ID: 25619939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative evaluation of gene-set analysis methods.
    Liu Q; Dinu I; Adewale AJ; Potter JD; Yasui Y
    BMC Bioinformatics; 2007 Nov; 8():431. PubMed ID: 17988400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-scale supervised clustering-based feature selection for tumor classification and identification of biomarkers and targets on genomic data.
    Xu D; Zhang J; Xu H; Zhang Y; Chen W; Gao R; Dehmer M
    BMC Genomics; 2020 Sep; 21(1):650. PubMed ID: 32962626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of feature selection methods for cross-laboratory microarray analysis.
    Liu HC; Peng PC; Hsieh TC; Yeh TC; Lin CJ; Chen CY; Hou JY; Shih LY; Liang DC
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(3):593-604. PubMed ID: 24091394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A blocking strategy to improve gene selection for classification of gene expression data.
    Bontempi G
    IEEE/ACM Trans Comput Biol Bioinform; 2007; 4(2):293-300. PubMed ID: 17473321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robust gene selection methods using weighting schemes for microarray data analysis.
    Kang S; Song J
    BMC Bioinformatics; 2017 Sep; 18(1):389. PubMed ID: 28865426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.