BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

415 related articles for article (PubMed ID: 27846403)

  • 1. Magnetic hyperthermia enhances cell toxicity with respect to exogenous heating.
    Sanz B; Calatayud MP; Torres TE; Fanarraga ML; Ibarra MR; Goya GF
    Biomaterials; 2017 Jan; 114():62-70. PubMed ID: 27846403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual pH and temperature stimuli-responsive magnetic nanohydrogels for thermo-chemotherapy.
    Jaiswal MK; Pradhan A; Banerjee R; Bahadur D
    J Nanosci Nanotechnol; 2014 Jun; 14(6):4082-9. PubMed ID: 24738355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell damage produced by magnetic fluid hyperthermia on microglial BV2 cells.
    Calatayud MP; Soler E; Torres TE; Campos-Gonzalez E; Junquera C; Ibarra MR; Goya GF
    Sci Rep; 2017 Aug; 7(1):8627. PubMed ID: 28819156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic fluid hyperthermia enhances cytotoxicity of bortezomib in sensitive and resistant cancer cell lines.
    Alvarez-Berríos MP; Castillo A; Rinaldi C; Torres-Lugo M
    Int J Nanomedicine; 2014; 9():145-53. PubMed ID: 24379665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermosensitive/superparamagnetic iron oxide nanoparticle-loaded nanocapsule hydrogels for multiple cancer hyperthermia.
    Zhang ZQ; Song SC
    Biomaterials; 2016 Nov; 106():13-23. PubMed ID: 27543919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacterial exopolysaccharide based magnetic nanoparticles: a versatile nanotool for cancer cell imaging, targeted drug delivery and synergistic effect of drug and hyperthermia mediated cancer therapy.
    Sivakumar B; Aswathy RG; Sreejith R; Nagaoka Y; Iwai S; Suzuki M; Fukuda T; Hasumura T; Yoshida Y; Maekawa T; Sakthikumar DN
    J Biomed Nanotechnol; 2014 Jun; 10(6):885-99. PubMed ID: 24749386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shape-controlled fabrication of magnetite silver hybrid nanoparticles with high performance magnetic hyperthermia.
    Ding Q; Liu D; Guo D; Yang F; Pang X; Che R; Zhou N; Xie J; Sun J; Huang Z; Gu N
    Biomaterials; 2017 Apr; 124():35-46. PubMed ID: 28187393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biocompatible Nanoclusters with High Heating Efficiency for Systemically Delivered Magnetic Hyperthermia.
    Albarqi HA; Wong LH; Schumann C; Sabei FY; Korzun T; Li X; Hansen MN; Dhagat P; Moses AS; Taratula O; Taratula O
    ACS Nano; 2019 Jun; 13(6):6383-6395. PubMed ID: 31082199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Minimal-invasive magnetic heating of tumors does not alter intra-tumoral nanoparticle accumulation, allowing for repeated therapy sessions: an in vivo study in mice.
    Kettering M; Richter H; Wiekhorst F; Bremer-Streck S; Trahms L; Kaiser WA; Hilger I
    Nanotechnology; 2011 Dec; 22(50):505102. PubMed ID: 22107782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An effective thermal therapy against cancer using an E-jet 3D-printing method to prepare implantable magnetocaloric mats.
    Yang Y; Tong C; Zhong J; Huang R; Tan W; Tan Z
    J Biomed Mater Res B Appl Biomater; 2018 Jul; 106(5):1827-1841. PubMed ID: 28914992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cancer hyperthermia using magnetic nanoparticles.
    Kobayashi T
    Biotechnol J; 2011 Nov; 6(11):1342-7. PubMed ID: 22069094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature-controlled magnetic nanoparticles hyperthermia inhibits primary tumor growth and metastases dissemination.
    Garanina AS; Naumenko VA; Nikitin AA; Myrovali E; Petukhova AY; Klimyuk SV; Nalench YA; Ilyasov AR; Vodopyanov SS; Erofeev AS; Gorelkin PV; Angelakeris M; Savchenko AG; Wiedwald U; Majouga Dr AG; Abakumov MA
    Nanomedicine; 2020 Apr; 25():102171. PubMed ID: 32084594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Therapeutic evaluation of magnetic hyperthermia using Fe3O4-aminosilane-coated iron oxide nanoparticles in glioblastoma animal model.
    Rego GNA; Mamani JB; Souza TKF; Nucci MP; Silva HRD; Gamarra LF
    Einstein (Sao Paulo); 2019 Aug; 17(4):eAO4786. PubMed ID: 31390427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic nanoparticles and clusters for magnetic hyperthermia: optimizing their heat performance and developing combinatorial therapies to tackle cancer.
    Gavilán H; Avugadda SK; Fernández-Cabada T; Soni N; Cassani M; Mai BT; Chantrell R; Pellegrino T
    Chem Soc Rev; 2021 Oct; 50(20):11614-11667. PubMed ID: 34661212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toxicity evaluation of magnetic hyperthermia induced by remote actuation of magnetic nanoparticles in 3D micrometastasic tumor tissue analogs for triple negative breast cancer.
    Stocke NA; Sethi P; Jyoti A; Chan R; Arnold SM; Hilt JZ; Upreti M
    Biomaterials; 2017 Mar; 120():115-125. PubMed ID: 28056401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell-Promoted Nanoparticle Aggregation Decreases Nanoparticle-Induced Hyperthermia under an Alternating Magnetic Field Independently of Nanoparticle Coating, Core Size, and Subcellular Localization.
    Mejías R; Hernández Flores P; Talelli M; Tajada-Herráiz JL; Brollo MEF; Portilla Y; Morales MP; Barber DF
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):340-355. PubMed ID: 30525392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization and Design of Magnetic Ferrite Nanoparticles with Uniform Tumor Distribution for Highly Sensitive MRI/MPI Performance and Improved Magnetic Hyperthermia Therapy.
    Du Y; Liu X; Liang Q; Liang XJ; Tian J
    Nano Lett; 2019 Jun; 19(6):3618-3626. PubMed ID: 31074627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction of orthogonal synchronized bi-directional field to enhance heating efficiency of magnetic nanoparticles.
    Chen SW; Lai JJ; Chiang CL; Chen CL
    Rev Sci Instrum; 2012 Jun; 83(6):064701. PubMed ID: 22755645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of magnetically induced hyperthermia in the model protozoan Crithidia fasciculata as a potential therapy against parasitic infections.
    Grazú V; Silber AM; Moros M; Asín L; Torres TE; Marquina C; Ibarra MR; Goya GF
    Int J Nanomedicine; 2012; 7():5351-60. PubMed ID: 23071396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced reduction in cell viability by hyperthermia induced by magnetic nanoparticles.
    Rodríguez-Luccioni HL; Latorre-Esteves M; Méndez-Vega J; Soto O; Rodríguez AR; Rinaldi C; Torres-Lugo M
    Int J Nanomedicine; 2011; 6():373-80. PubMed ID: 21499427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.