These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 27846423)

  • 1. In silico target prediction for elucidating the mode of action of herbicides including prospective validation.
    Chiddarwar RK; Rohrer SG; Wolf A; Tresch S; Wollenhaupt S; Bender A
    J Mol Graph Model; 2017 Jan; 71():70-79. PubMed ID: 27846423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A perspective on the role of quantitative structure-activity and structure-property relationships in herbicide discovery.
    Clark RD
    Pest Manag Sci; 2012 Apr; 68(4):513-8. PubMed ID: 22323389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comprehensive support vector machine binary hERG classification model based on extensive but biased end point hERG data sets.
    Shen MY; Su BH; Esposito EX; Hopfinger AJ; Tseng YJ
    Chem Res Toxicol; 2011 Jun; 24(6):934-49. PubMed ID: 21504223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 4-Hydroxyphenylpyruvate Dioxygenase Inhibitors: From Chemical Biology to Agrochemicals.
    Ndikuryayo F; Moosavi B; Yang WC; Yang GF
    J Agric Food Chem; 2017 Oct; 65(39):8523-8537. PubMed ID: 28903556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Natural products, their derivatives, mimics and synthetic equivalents: role in agrochemical discovery.
    Sparks TC; Hahn DR; Garizi NV
    Pest Manag Sci; 2017 Apr; 73(4):700-715. PubMed ID: 27739147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High throughput screening in agrochemical research.
    Tietjen K; Drewes M; Stenzel K
    Comb Chem High Throughput Screen; 2005 Nov; 8(7):589-94. PubMed ID: 16305356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TOPS-MODE based QSARs derived from heterogeneous series of compounds. Applications to the design of new herbicides.
    Pérez González M; Gonzalez Díaz H; Molina Ruiz R; Cabrera MA; Ramos de Armas R
    J Chem Inf Comput Sci; 2003; 43(4):1192-9. PubMed ID: 12870911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ligand-based virtual screening and in silico design of new antimalarial compounds using nonstochastic and stochastic total and atom-type quadratic maps.
    Marrero-Ponce Y; Iyarreta-Veitía M; Montero-Torres A; Romero-Zaldivar C; Brandt CA; Avila PE; Kirchgatter K; Machado Y
    J Chem Inf Model; 2005; 45(4):1082-100. PubMed ID: 16045304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selecting the right compounds for screening: does Lipinski's Rule of 5 for pharmaceuticals apply to agrochemicals?
    Tice CM
    Pest Manag Sci; 2001 Jan; 57(1):3-16. PubMed ID: 11455629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discovery of pyridine-based agrochemicals by using Intermediate Derivatization Methods.
    Guan AY; Liu CL; Sun XF; Xie Y; Wang MA
    Bioorg Med Chem; 2016 Feb; 24(3):342-53. PubMed ID: 26481150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Why have no new herbicide modes of action appeared in recent years?
    Duke SO
    Pest Manag Sci; 2012 Apr; 68(4):505-12. PubMed ID: 22190296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HPPD: ligand- and target-based virtual screening on a herbicide target.
    López-Ramos M; Perruccio F
    J Chem Inf Model; 2010 May; 50(5):801-14. PubMed ID: 20359237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combinatorial chemistry in the agrosciences.
    Lindell SD; Pattenden LC; Shannon J
    Bioorg Med Chem; 2009 Jun; 17(12):4035-46. PubMed ID: 19349185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integration of in silico and in vitro tools for scaffold optimization during drug discovery: predicting P-glycoprotein efflux.
    Desai PV; Sawada GA; Watson IA; Raub TJ
    Mol Pharm; 2013 Apr; 10(4):1249-61. PubMed ID: 23363443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In silico target predictions: defining a benchmarking data set and comparison of performance of the multiclass Naïve Bayes and Parzen-Rosenblatt window.
    Koutsoukas A; Lowe R; Kalantarmotamedi Y; Mussa HY; Klaffke W; Mitchell JB; Glen RC; Bender A
    J Chem Inf Model; 2013 Aug; 53(8):1957-66. PubMed ID: 23829430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PASS Targets: Ligand-based multi-target computational system based on a public data and naïve Bayes approach.
    Pogodin PV; Lagunin AA; Filimonov DA; Poroikov VV
    SAR QSAR Environ Res; 2015; 26(10):783-93. PubMed ID: 26305108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rationale for a natural products approach to herbicide discovery.
    Dayan FE; Owens DK; Duke SO
    Pest Manag Sci; 2012 Apr; 68(4):519-28. PubMed ID: 22232033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Situ Eco Encapsulation of Bioactive Agrochemicals within Fully Organic Nanotubes.
    Mejías FJR; Trasobares S; López-Haro M; Varela RM; Molinillo JMG; Calvino JJ; Macías FA
    ACS Appl Mater Interfaces; 2019 Nov; 11(45):41925-41934. PubMed ID: 31633337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discovery of multitarget-directed ligands against Alzheimer's disease through systematic prediction of chemical-protein interactions.
    Fang J; Li Y; Liu R; Pang X; Li C; Yang R; He Y; Lian W; Liu AL; Du GH
    J Chem Inf Model; 2015 Jan; 55(1):149-64. PubMed ID: 25531792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational insight into the chemical space of plant growth regulators.
    Bushkov NA; Veselov MS; Chuprov-Netochin RN; Marusich EI; Majouga AG; Volynchuk PB; Shumilina DV; Leonov SV; Ivanenkov YA
    Phytochemistry; 2016 Feb; 122():254-264. PubMed ID: 26723884
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.