BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 27846446)

  • 1. Studies in using a universal exchange and inference language for evidence based medicine. Semi-automated learning and reasoning for PICO methodology, systematic review, and environmental epidemiology.
    Robson B
    Comput Biol Med; 2016 Dec; 79():299-323. PubMed ID: 27846446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Implementation of a web based universal exchange and inference language for medicine: Sparse data, probabilities and inference in data mining of clinical data repositories.
    Robson B; Boray S
    Comput Biol Med; 2015 Nov; 66():82-102. PubMed ID: 26386548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A universal exchange language for healthcare.
    Robson B; Caruso TP
    Stud Health Technol Inform; 2013; 192():949. PubMed ID: 23920723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. POPPER, a simple programming language for probabilistic semantic inference in medicine.
    Robson B
    Comput Biol Med; 2015 Jan; 56():107-23. PubMed ID: 25464353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suggestions for a Web based universal exchange and inference language for medicine.
    Robson B; Caruso TP; Balis UG
    Comput Biol Med; 2013 Dec; 43(12):2297-310. PubMed ID: 24211018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Principles of Quantum Mechanics for Artificial Intelligence in medicine. Discussion with reference to the Quantum Universal Exchange Language (Q-UEL).
    Robson B; St Clair J
    Comput Biol Med; 2022 Apr; 143():105323. PubMed ID: 35240388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extension of the Quantum Universal Exchange Language to precision medicine and drug lead discovery. Preliminary example studies using the mitochondrial genome.
    Robson B
    Comput Biol Med; 2020 Feb; 117():103621. PubMed ID: 32072972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Artificial intelligence for future MD].
    Sancipriano GP; Buttafarro M
    G Ital Nefrol; 2018 Dec; 35(6):. PubMed ID: 30550043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Suggestions for a web based universal exchange and inference language for medicine. Continuity of patient care with PCAST disaggregation.
    Robson B; Caruso TP; Balis UG
    Comput Biol Med; 2015 Jan; 56():51-66. PubMed ID: 25464348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EBM+: Advancing Evidence-Based Medicine via two level automatic identification of Populations, Interventions, Outcomes in medical literature.
    Stylianou N; Razis G; Goulis DG; Vlahavas I
    Artif Intell Med; 2020 Aug; 108():101949. PubMed ID: 32972669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Data-mining to build a knowledge representation store for clinical decision support. Studies on curation and validation based on machine performance in multiple choice medical licensing examinations.
    Robson B; Boray S
    Comput Biol Med; 2016 Jun; 73():71-93. PubMed ID: 27089305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Semantic reasoning with XML-based biomedical information models.
    O'Connor MJ; Das A
    Stud Health Technol Inform; 2010; 160(Pt 2):986-90. PubMed ID: 20841831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computers and viral diseases. Preliminary bioinformatics studies on the design of a synthetic vaccine and a preventative peptidomimetic antagonist against the SARS-CoV-2 (2019-nCoV, COVID-19) coronavirus.
    Robson B
    Comput Biol Med; 2020 Apr; 119():103670. PubMed ID: 32209231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Not so weak PICO: leveraging weak supervision for participants, interventions, and outcomes recognition for systematic review automation.
    Dhrangadhariya A; Müller H
    JAMIA Open; 2023 Apr; 6(1):ooac107. PubMed ID: 36632329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of artificial intelligence for automating or semi-automating biomedical literature analyses: A scoping review.
    Santos ÁOD; da Silva ES; Couto LM; Reis GVL; Belo VS
    J Biomed Inform; 2023 Jun; 142():104389. PubMed ID: 37187321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Beginnings of Artificial Intelligence in Medicine (AIM): Computational Artifice Assisting Scientific Inquiry and Clinical Art - with Reflections on Present AIM Challenges.
    Kulikowski CA
    Yearb Med Inform; 2019 Aug; 28(1):249-256. PubMed ID: 31022744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PRODIGE: PRediction models in prOstate cancer for personalized meDIcine challenGE.
    Alitto AR; Gatta R; Vanneste B; Vallati M; Meldolesi E; Damiani A; Lanzotti V; Mattiucci GC; Frascino V; Masciocchi C; Catucci F; Dekker A; Lambin P; Valentini V; Mantini G
    Future Oncol; 2017 Oct; 13(24):2171-2181. PubMed ID: 28758431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence-based healthcare and health informatics: derivations and extension of epidemiology.
    Nakayama T
    J Epidemiol; 2006 May; 16(3):93-100. PubMed ID: 16710077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using PICO to align medical evidence with MDs decision making models.
    O'Sullivan D; Wilk S; Michalowski W; Farion K
    Stud Health Technol Inform; 2013; 192():1057. PubMed ID: 23920831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extending BPMN 2.0 for intraoperative workflow modeling with IEEE 11073 SDC for description and orchestration of interoperable, networked medical devices.
    Neumann J; Franke S; Rockstroh M; Kasparick M; Neumuth T
    Int J Comput Assist Radiol Surg; 2019 Aug; 14(8):1403-1413. PubMed ID: 31055764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.