These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 27846559)

  • 1. Subthreshold Schottky-barrier thin-film transistors with ultralow power and high intrinsic gain.
    Lee S; Nathan A
    Science; 2016 Oct; 354(6310):302-304. PubMed ID: 27846559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Printed subthreshold organic transistors operating at high gain and ultralow power.
    Jiang C; Choi HW; Cheng X; Ma H; Hasko D; Nathan A
    Science; 2019 Feb; 363(6428):719-723. PubMed ID: 30765562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ambipolar Deep-Subthreshold Printed-Carbon-Nanotube Transistors for Ultralow-Voltage and Ultralow-Power Electronics.
    Portilla L; Zhao J; Wang Y; Sun L; Li F; Robin M; Wei M; Cui Z; Occhipinti LG; Anthopoulos TD; Pecunia V
    ACS Nano; 2020 Oct; 14(10):14036-14046. PubMed ID: 32924510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subthreshold Schottky-contacted carbon nanotube network film field-effect transistors for ultralow-power electronic applications.
    Zou J; Cai W; Zhang Q
    Nanotechnology; 2022 Oct; 33(50):. PubMed ID: 36130528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexible Pressure-Sensitive Contact Transistors Operating in the Subthreshold Regime.
    Baek S; Bae GY; Kwon J; Cho K; Jung S
    ACS Appl Mater Interfaces; 2019 Aug; 11(34):31111-31118. PubMed ID: 31373197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel Tunnel-Contact-Controlled IGZO Thin-Film Transistors with High Tolerance to Geometrical Variability.
    Sporea RA; Niang KM; Flewitt AJ; Silva SRP
    Adv Mater; 2019 Sep; 31(36):e1902551. PubMed ID: 31309623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Schottky barrier thin film transistors using solution-processed n-ZnO.
    Adl AH; Ma A; Gupta M; Benlamri M; Tsui YY; Barlage DW; Shankar K
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1423-8. PubMed ID: 22387678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extremely high-gain source-gated transistors.
    Zhang J; Wilson J; Auton G; Wang Y; Xu M; Xin Q; Song A
    Proc Natl Acad Sci U S A; 2019 Mar; 116(11):4843-4848. PubMed ID: 30804190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical Gated Field Effect Transistor by Hybrid Integration of One-Dimensional Silicon Nanowire and Two-Dimensional Tin Oxide Thin Film for Low Power Gas Sensor.
    Han JW; Rim T; Baek CK; Meyyappan M
    ACS Appl Mater Interfaces; 2015 Sep; 7(38):21263-9. PubMed ID: 26381613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monolithic metal oxide transistors.
    Choi Y; Park WY; Kang MS; Yi GR; Lee JY; Kim YH; Cho JH
    ACS Nano; 2015 Apr; 9(4):4288-95. PubMed ID: 25777338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Study about Schottky Barrier Height and Ideality Factor in Thin Film Transistors with Metal/Zinc Oxide Nanoparticles Structures Aiming Flexible Electronics Application.
    Kaufmann IR; Zerey O; Meyers T; Reker J; Vidor F; Hilleringmann U
    Nanomaterials (Basel); 2021 Apr; 11(5):. PubMed ID: 33946278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultralow-power complementary metal-oxide-semiconductor inverters constructed on Schottky barrier modified nanowire metal-oxide-semiconductor field-effect-transistors.
    Ma RM; Peng RM; Wen XN; Dai L; Liu C; Sun T; Xu WJ; Qin GG
    J Nanosci Nanotechnol; 2010 Oct; 10(10):6428-31. PubMed ID: 21137742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental and numerical investigation of contact-area-limited doping for top-contact pentacene thin-film transistors with Schottky contact.
    Noda K; Wada Y; Toyabe T
    Phys Chem Chem Phys; 2015 Oct; 17(40):26535-40. PubMed ID: 24922359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interfacial Oxidized Gate Insulators for Low-Power Oxide Thin-Film Transistors.
    Kang IH; Hwang SH; Baek YJ; Kim SG; Han YL; Kang MS; Woo JG; Lee JM; Yu ES; Bae BS
    ACS Omega; 2021 Feb; 6(4):2717-2726. PubMed ID: 33553889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual-gate thin film transistor lactate sensors operating in the subthreshold regime.
    Baek S; Matsui H; Mano T; Park JA; Jo Y; Lee Y; Tokito S; Kwon J; Jung S
    Biosens Bioelectron; 2023 Feb; 222():114958. PubMed ID: 36502715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Device perspective for black phosphorus field-effect transistors: contact resistance, ambipolar behavior, and scaling.
    Du Y; Liu H; Deng Y; Ye PD
    ACS Nano; 2014 Oct; 8(10):10035-42. PubMed ID: 25314022
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Field effect transistors with current saturation and voltage gain in ultrathin ReS2.
    Corbet CM; McClellan C; Rai A; Sonde SS; Tutuc E; Banerjee SK
    ACS Nano; 2015 Jan; 9(1):363-70. PubMed ID: 25514177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scaling and Graphical Transport-Map Analysis of Ambipolar Schottky-Barrier Thin-Film Transistors Based on a Parallel Array of Si Nanowires.
    Jeon DY; Pregl S; Park SJ; Baraban L; Cuniberti G; Mikolajick T; Weber WM
    Nano Lett; 2015 Jul; 15(7):4578-84. PubMed ID: 26087437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Switching mechanism in single-layer molybdenum disulfide transistors: an insight into current flow across Schottky barriers.
    Liu H; Si M; Deng Y; Neal AT; Du Y; Najmaei S; Ajayan PM; Lou J; Ye PD
    ACS Nano; 2014 Jan; 8(1):1031-8. PubMed ID: 24351134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analytical modeling of trilayer graphene nanoribbon Schottky-barrier FET for high-speed switching applications.
    Rahmani M; Ahmadi MT; Abadi HK; Saeidmanesh M; Akbari E; Ismail R
    Nanoscale Res Lett; 2013 Jan; 8(1):55. PubMed ID: 23363692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.