These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 27846600)

  • 1. Single-molecule optomechanics in "picocavities".
    Benz F; Schmidt MK; Dreismann A; Chikkaraddy R; Zhang Y; Demetriadou A; Carnegie C; Ohadi H; de Nijs B; Esteban R; Aizpurua J; Baumberg JJ
    Science; 2016 Nov; 354(6313):726-729. PubMed ID: 27846600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inelastic Light Scattering in the Vicinity of a Single-Atom Quantum Point Contact in a Plasmonic Picocavity.
    Liu S; Bonafe FP; Appel H; Rubio A; Wolf M; Kumagai T
    ACS Nano; 2023 Jun; 17(11):10172-10180. PubMed ID: 37183801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Giant optomechanical spring effect in plasmonic nano- and picocavities probed by surface-enhanced Raman scattering.
    Jakob LA; Deacon WM; Zhang Y; de Nijs B; Pavlenko E; Hu S; Carnegie C; Neuman T; Esteban R; Aizpurua J; Baumberg JJ
    Nat Commun; 2023 Jun; 14(1):3291. PubMed ID: 37280203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Locating Single-Atom Optical Picocavities Using Wavelength-Multiplexed Raman Scattering.
    Griffiths J; de Nijs B; Chikkaraddy R; Baumberg JJ
    ACS Photonics; 2021 Oct; 8(10):2868-2875. PubMed ID: 34692898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Room-Temperature Optical Picocavities below 1 nm
    Carnegie C; Griffiths J; de Nijs B; Readman C; Chikkaraddy R; Deacon WM; Zhang Y; Szabó I; Rosta E; Aizpurua J; Baumberg JJ
    J Phys Chem Lett; 2018 Dec; 9(24):7146-7151. PubMed ID: 30525662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Optomechanics Approach to Surface-Enhanced Raman Scattering.
    Esteban R; Baumberg JJ; Aizpurua J
    Acc Chem Res; 2022 Jul; 55(14):1889-1899. PubMed ID: 35776555
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disordered ensembles of strongly coupled single-molecule plasmonic picocavities as nonlinear optical metamaterials.
    Herrera F; Litinskaya M
    J Chem Phys; 2022 Mar; 156(11):114702. PubMed ID: 35317564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomic-Scale Lightning Rod Effect in Plasmonic Picocavities: A Classical View to a Quantum Effect.
    Urbieta M; Barbry M; Zhang Y; Koval P; Sánchez-Portal D; Zabala N; Aizpurua J
    ACS Nano; 2018 Jan; 12(1):585-595. PubMed ID: 29298379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Picocavities: a Primer.
    Baumberg JJ
    Nano Lett; 2022 Jul; 22(14):5859-5865. PubMed ID: 35793541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Directional picoantenna behavior of tunnel junctions formed by an atomic-scale surface defect.
    Mateos D; Jover O; Varea M; Lauwaet K; Granados D; Miranda R; Fernandez-Dominguez AI; Martin-Jimenez A; Otero R
    Sci Adv; 2024 Sep; 10(39):eadn2295. PubMed ID: 39321296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micropillar Resonators for Optomechanics in the Extremely High 19-95-GHz Frequency Range.
    Anguiano S; Bruchhausen AE; Jusserand B; Favero I; Lamberti FR; Lanco L; Sagnes I; Lemaître A; Lanzillotti-Kimura ND; Senellart P; Fainstein A
    Phys Rev Lett; 2017 Jun; 118(26):263901. PubMed ID: 28707938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Boosting Light-Matter Interactions in Plasmonic Nanogaps.
    Li Y; Chen W; He X; Shi J; Cui X; Sun J; Xu H
    Adv Mater; 2024 Oct; ():e2405186. PubMed ID: 39410718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical field enhancement by strong plasmon interaction in graphene nanostructures.
    Thongrattanasiri S; García de Abajo FJ
    Phys Rev Lett; 2013 May; 110(18):187401. PubMed ID: 23683241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coupling of light and mechanics in a photonic crystal waveguide.
    Béguin JB; Qin Z; Luan X; Kimble HJ
    Proc Natl Acad Sci U S A; 2020 Nov; 117(47):29422-29430. PubMed ID: 33168713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular cavity optomechanics as a theory of plasmon-enhanced Raman scattering.
    Roelli P; Galland C; Piro N; Kippenberg TJ
    Nat Nanotechnol; 2016 Feb; 11(2):164-9. PubMed ID: 26595330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomic-Scale Structural Fluctuations of a Plasmonic Cavity.
    Rosławska A; Merino P; Grewal A; Leon CC; Kuhnke K; Kern K
    Nano Lett; 2021 Sep; 21(17):7221-7227. PubMed ID: 34428071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Realizing Strong Light-Matter Interactions between Single-Nanoparticle Plasmons and Molecular Excitons at Ambient Conditions.
    Zengin G; Wersäll M; Nilsson S; Antosiewicz TJ; Käll M; Shegai T
    Phys Rev Lett; 2015 Apr; 114(15):157401. PubMed ID: 25933338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlling Optically Driven Atomic Migration Using Crystal-Facet Control in Plasmonic Nanocavities.
    Xomalis A; Chikkaraddy R; Oksenberg E; Shlesinger I; Huang J; Garnett EC; Koenderink AF; Baumberg JJ
    ACS Nano; 2020 Aug; 14(8):10562-10568. PubMed ID: 32687323
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering.
    Zhu W; Crozier KB
    Nat Commun; 2014 Oct; 5():5228. PubMed ID: 25311008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving the room-temperature confinement of light by miniaturizing mode sizes into a deep subwavelength scale using dielectric spheres in metal cavities.
    Liu K; Luo Z; Ye WM; Yuan XD; Zhu ZH; Zeng C
    Opt Lett; 2012 Oct; 37(19):4107-9. PubMed ID: 23027294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.