These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Inelastic Light Scattering in the Vicinity of a Single-Atom Quantum Point Contact in a Plasmonic Picocavity. Liu S; Bonafe FP; Appel H; Rubio A; Wolf M; Kumagai T ACS Nano; 2023 Jun; 17(11):10172-10180. PubMed ID: 37183801 [TBL] [Abstract][Full Text] [Related]
3. Giant optomechanical spring effect in plasmonic nano- and picocavities probed by surface-enhanced Raman scattering. Jakob LA; Deacon WM; Zhang Y; de Nijs B; Pavlenko E; Hu S; Carnegie C; Neuman T; Esteban R; Aizpurua J; Baumberg JJ Nat Commun; 2023 Jun; 14(1):3291. PubMed ID: 37280203 [TBL] [Abstract][Full Text] [Related]
10. Directional picoantenna behavior of tunnel junctions formed by an atomic-scale surface defect. Mateos D; Jover O; Varea M; Lauwaet K; Granados D; Miranda R; Fernandez-Dominguez AI; Martin-Jimenez A; Otero R Sci Adv; 2024 Sep; 10(39):eadn2295. PubMed ID: 39321296 [TBL] [Abstract][Full Text] [Related]
11. Micropillar Resonators for Optomechanics in the Extremely High 19-95-GHz Frequency Range. Anguiano S; Bruchhausen AE; Jusserand B; Favero I; Lamberti FR; Lanco L; Sagnes I; Lemaître A; Lanzillotti-Kimura ND; Senellart P; Fainstein A Phys Rev Lett; 2017 Jun; 118(26):263901. PubMed ID: 28707938 [TBL] [Abstract][Full Text] [Related]
12. Boosting Light-Matter Interactions in Plasmonic Nanogaps. Li Y; Chen W; He X; Shi J; Cui X; Sun J; Xu H Adv Mater; 2024 Oct; ():e2405186. PubMed ID: 39410718 [TBL] [Abstract][Full Text] [Related]
13. Optical field enhancement by strong plasmon interaction in graphene nanostructures. Thongrattanasiri S; García de Abajo FJ Phys Rev Lett; 2013 May; 110(18):187401. PubMed ID: 23683241 [TBL] [Abstract][Full Text] [Related]
14. Coupling of light and mechanics in a photonic crystal waveguide. Béguin JB; Qin Z; Luan X; Kimble HJ Proc Natl Acad Sci U S A; 2020 Nov; 117(47):29422-29430. PubMed ID: 33168713 [TBL] [Abstract][Full Text] [Related]
15. Molecular cavity optomechanics as a theory of plasmon-enhanced Raman scattering. Roelli P; Galland C; Piro N; Kippenberg TJ Nat Nanotechnol; 2016 Feb; 11(2):164-9. PubMed ID: 26595330 [TBL] [Abstract][Full Text] [Related]
16. Atomic-Scale Structural Fluctuations of a Plasmonic Cavity. Rosławska A; Merino P; Grewal A; Leon CC; Kuhnke K; Kern K Nano Lett; 2021 Sep; 21(17):7221-7227. PubMed ID: 34428071 [TBL] [Abstract][Full Text] [Related]
17. Realizing Strong Light-Matter Interactions between Single-Nanoparticle Plasmons and Molecular Excitons at Ambient Conditions. Zengin G; Wersäll M; Nilsson S; Antosiewicz TJ; Käll M; Shegai T Phys Rev Lett; 2015 Apr; 114(15):157401. PubMed ID: 25933338 [TBL] [Abstract][Full Text] [Related]
19. Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering. Zhu W; Crozier KB Nat Commun; 2014 Oct; 5():5228. PubMed ID: 25311008 [TBL] [Abstract][Full Text] [Related]
20. Improving the room-temperature confinement of light by miniaturizing mode sizes into a deep subwavelength scale using dielectric spheres in metal cavities. Liu K; Luo Z; Ye WM; Yuan XD; Zhu ZH; Zeng C Opt Lett; 2012 Oct; 37(19):4107-9. PubMed ID: 23027294 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]