These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 27846811)
1. Comments on: fold change rank ordering statistics: a new method for detecting differentially expressed genes. Dembélé D; Kastner P BMC Bioinformatics; 2016 Nov; 17(1):462. PubMed ID: 27846811 [TBL] [Abstract][Full Text] [Related]
2. Fold change rank ordering statistics: a new method for detecting differentially expressed genes. Dembélé D; Kastner P BMC Bioinformatics; 2014 Jan; 15():14. PubMed ID: 24423217 [TBL] [Abstract][Full Text] [Related]
3. Ranking analysis for identifying differentially expressed genes. Qi Y; Sun H; Sun Q; Pan L Genomics; 2011 May; 97(5):326-9. PubMed ID: 21402142 [TBL] [Abstract][Full Text] [Related]
4. Comparison of seven methods for producing Affymetrix expression scores based on False Discovery Rates in disease profiling data. Shedden K; Chen W; Kuick R; Ghosh D; Macdonald J; Cho KR; Giordano TJ; Gruber SB; Fearon ER; Taylor JM; Hanash S BMC Bioinformatics; 2005 Feb; 6():26. PubMed ID: 15705192 [TBL] [Abstract][Full Text] [Related]
5. A non-transformation method for identifying differentially expressed genes from cDNA microarrays. Zhang JG; Yin ZJ; Zhang Q Yi Chuan Xue Bao; 2006 Jan; 33(1):80-8. PubMed ID: 16450591 [TBL] [Abstract][Full Text] [Related]
6. Normal uniform mixture differential gene expression detection for cDNA microarrays. Dean N; Raftery AE BMC Bioinformatics; 2005 Jul; 6():173. PubMed ID: 16011807 [TBL] [Abstract][Full Text] [Related]
7. Identifying differentially expressed genes from microarray experiments via statistic synthesis. Yang YH; Xiao Y; Segal MR Bioinformatics; 2005 Apr; 21(7):1084-93. PubMed ID: 15513985 [TBL] [Abstract][Full Text] [Related]
8. Quadratic regression analysis for gene discovery and pattern recognition for non-cyclic short time-course microarray experiments. Liu H; Tarima S; Borders AS; Getchell TV; Getchell ML; Stromberg AJ BMC Bioinformatics; 2005 Apr; 6():106. PubMed ID: 15850479 [TBL] [Abstract][Full Text] [Related]
9. A benchmark for statistical microarray data analysis that preserves actual biological and technical variance. De Hertogh B; De Meulder B; Berger F; Pierre M; Bareke E; Gaigneaux A; Depiereux E BMC Bioinformatics; 2010 Jan; 11():17. PubMed ID: 20064233 [TBL] [Abstract][Full Text] [Related]
10. Microarrays: how many do you need? Zien A; Fluck J; Zimmer R; Lengauer T J Comput Biol; 2003; 10(3-4):653-67. PubMed ID: 12935350 [TBL] [Abstract][Full Text] [Related]
11. Microarray data analysis: from disarray to consolidation and consensus. Allison DB; Cui X; Page GP; Sabripour M Nat Rev Genet; 2006 Jan; 7(1):55-65. PubMed ID: 16369572 [TBL] [Abstract][Full Text] [Related]
12. A new outlier removal approach for cDNA microarray normalization. Wu Y; Yan L; Liu H; Sun H; Xie H Biotechniques; 2009 Aug; 47(2):691-2, 694-700. PubMed ID: 19737130 [TBL] [Abstract][Full Text] [Related]
13. Differential regulation enrichment analysis via the integration of transcriptional regulatory network and gene expression data. Ma S; Jiang T; Jiang R Bioinformatics; 2015 Feb; 31(4):563-71. PubMed ID: 25322838 [TBL] [Abstract][Full Text] [Related]
15. Microarray data quality control improves the detection of differentially expressed genes. Kauffmann A; Huber W Genomics; 2010 Mar; 95(3):138-42. PubMed ID: 20079422 [TBL] [Abstract][Full Text] [Related]
16. Can Zipf's law be adapted to normalize microarrays? Lu T; Costello CM; Croucher PJ; Häsler R; Deuschl G; Schreiber S BMC Bioinformatics; 2005 Feb; 6():37. PubMed ID: 15727680 [TBL] [Abstract][Full Text] [Related]
17. Comparison and evaluation of methods for generating differentially expressed gene lists from microarray data. Jeffery IB; Higgins DG; Culhane AC BMC Bioinformatics; 2006 Jul; 7():359. PubMed ID: 16872483 [TBL] [Abstract][Full Text] [Related]
18. Mining published lists of cancer related microarray experiments: identification of a gene expression signature having a critical role in cell-cycle control. Finocchiaro G; Mancuso F; Muller H BMC Bioinformatics; 2005 Dec; 6 Suppl 4(Suppl 4):S14. PubMed ID: 16351740 [TBL] [Abstract][Full Text] [Related]
19. Rank-based methods as a non-parametric alternative of the T-statistic for the analysis of biological microarray data. Breitling R; Herzyk P J Bioinform Comput Biol; 2005 Oct; 3(5):1171-89. PubMed ID: 16278953 [TBL] [Abstract][Full Text] [Related]
20. A novel Mixture Model Method for identification of differentially expressed genes from DNA microarray data. Najarian K; Zaheri M; Rad AA; Najarian S; Dargahi J BMC Bioinformatics; 2004 Dec; 5():201. PubMed ID: 15603585 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]