BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 27846887)

  • 1. CRISPR interference (CRISPRi) for gene regulation and succinate production in cyanobacterium S. elongatus PCC 7942.
    Huang CH; Shen CR; Li H; Sung LY; Wu MY; Hu YC
    Microb Cell Fact; 2016 Nov; 15(1):196. PubMed ID: 27846887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR interference as a titratable, trans-acting regulatory tool for metabolic engineering in the cyanobacterium Synechococcus sp. strain PCC 7002.
    Gordon GC; Korosh TC; Cameron JC; Markley AL; Begemann MB; Pfleger BF
    Metab Eng; 2016 Nov; 38():170-179. PubMed ID: 27481676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Corynebacterium glutamicum Metabolic Engineering with CRISPR Interference (CRISPRi).
    Cleto S; Jensen JV; Wendisch VF; Lu TK
    ACS Synth Biol; 2016 May; 5(5):375-85. PubMed ID: 26829286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR-Cas9 for the genome engineering of cyanobacteria and succinate production.
    Li H; Shen CR; Huang CH; Sung LY; Wu MY; Hu YC
    Metab Eng; 2016 Nov; 38():293-302. PubMed ID: 27693320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of CRISPR Interference for Metabolic Engineering of the Heterocyst-Forming Multicellular Cyanobacterium Anabaena sp. PCC 7120.
    Higo A; Isu A; Fukaya Y; Ehira S; Hisabori T
    Plant Cell Physiol; 2018 Jan; 59(1):119-127. PubMed ID: 29112727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of CRISPR interference on strain development in biotechnology.
    Schultenkämper K; Brito LF; Wendisch VF
    Biotechnol Appl Biochem; 2020 Jan; 67(1):7-21. PubMed ID: 32064678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing Protein Production Yield from Chinese Hamster Ovary Cells by CRISPR Interference.
    Shen CC; Sung LY; Lin SY; Lin MW; Hu YC
    ACS Synth Biol; 2017 Aug; 6(8):1509-1519. PubMed ID: 28418635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Reduced and Enhanced Glycogen Pools on Salt-Induced Sucrose Production in a Sucrose-Secreting Strain of Synechococcus elongatus PCC 7942.
    Qiao C; Duan Y; Zhang M; Hagemann M; Luo Q; Lu X
    Appl Environ Microbiol; 2018 Jan; 84(2):. PubMed ID: 29101204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redirecting Metabolic Flux via Combinatorial Multiplex CRISPRi-Mediated Repression for Isopentenol Production in Escherichia coli.
    Tian T; Kang JW; Kang A; Lee TS
    ACS Synth Biol; 2019 Feb; 8(2):391-402. PubMed ID: 30681833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic engineering of cyanobacteria for the photosynthetic production of succinate.
    Lan EI; Wei CT
    Metab Eng; 2016 Nov; 38():483-493. PubMed ID: 27989804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPRi-enhanced direct photosynthetic conversion of carbon dioxide to succinic acid by metabolically engineered cyanobacteria.
    Lai MJ; Tsai JC; Lan EI
    Bioresour Technol; 2022 Dec; 366():128131. PubMed ID: 36252759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptional Knockdown in Pneumococci Using CRISPR Interference.
    Kjos M
    Methods Mol Biol; 2019; 1968():89-98. PubMed ID: 30929208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNA-guided single/double gene repressions in Corynebacterium glutamicum using an efficient CRISPR interference and its application to industrial strain.
    Park J; Shin H; Lee SM; Um Y; Woo HM
    Microb Cell Fact; 2018 Jan; 17(1):4. PubMed ID: 29316926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reversible Gene Expression Control in Yersinia pestis by Using an Optimized CRISPR Interference System.
    Wang T; Wang M; Zhang Q; Cao S; Li X; Qi Z; Tan Y; You Y; Bi Y; Song Y; Yang R; Du Z
    Appl Environ Microbiol; 2019 Jun; 85(12):. PubMed ID: 30979834
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptional repression of endogenous genes in BmE cells using CRISPRi system.
    Wang X; Ma S; Liu Y; Lu W; Sun L; Zhao P; Xia Q
    Insect Biochem Mol Biol; 2019 Aug; 111():103172. PubMed ID: 31103783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced protein and biochemical production using CRISPRi-based growth switches.
    Li S; Jendresen CB; Grünberger A; Ronda C; Jensen SI; Noack S; Nielsen AT
    Metab Eng; 2016 Nov; 38():274-284. PubMed ID: 27647432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene transcription repression in Clostridium beijerinckii using CRISPR-dCas9.
    Wang Y; Zhang ZT; Seo SO; Lynn P; Lu T; Jin YS; Blaschek HP
    Biotechnol Bioeng; 2016 Dec; 113(12):2739-2743. PubMed ID: 27240718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPRi-mediated tunable control of gene expression level with engineered single-guide RNA in Escherichia coli.
    Byun G; Yang J; Seo SW
    Nucleic Acids Res; 2023 May; 51(9):4650-4659. PubMed ID: 36999618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR/Cas9 mediated targeted mutagenesis of the fast growing cyanobacterium Synechococcus elongatus UTEX 2973.
    Wendt KE; Ungerer J; Cobb RE; Zhao H; Pakrasi HB
    Microb Cell Fact; 2016 Jun; 15(1):115. PubMed ID: 27339038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeted Transcriptional Repression in Bacteria Using CRISPR Interference (CRISPRi).
    Hawkins JS; Wong S; Peters JM; Almeida R; Qi LS
    Methods Mol Biol; 2015; 1311():349-62. PubMed ID: 25981485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.