These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
26. Cellulose nanofibers enabled strong and flexible plant-derived thermoplastic polyester elastomer foams for high-performance thermally insulating applications. Xu Z; Wang G; Zhang A; Li X; Zhao G Int J Biol Macromol; 2024 Nov; 279(Pt 1):135488. PubMed ID: 39349318 [TBL] [Abstract][Full Text] [Related]
27. Evaluation of novel alginate foams as drug delivery systems in antimicrobial photodynamic therapy (aPDT) of infected wounds--an in vitro study: studies on curcumin and curcuminoides XL. Hegge AB; Andersen T; Melvik JE; Kristensen S; Tønnesen HH J Pharm Sci; 2010 Aug; 99(8):3499-513. PubMed ID: 20564381 [TBL] [Abstract][Full Text] [Related]
28. Strong, Water-Durable, and Wet-Resilient Cellulose Nanofibril-Stabilized Foams from Oven Drying. Cervin NT; Johansson E; Larsson PA; Wågberg L ACS Appl Mater Interfaces; 2016 May; 8(18):11682-9. PubMed ID: 27070532 [TBL] [Abstract][Full Text] [Related]
29. Controlled release matrix tablets of glipizide: Influence of different grades of ethocel and Co-excipient on drug release. Mehsud SU; Khan GM; Hussain A; Akram M; Akhlaq M; Khan KA; Shakoor A Pak J Pharm Sci; 2016 May; 29(3):779-87. PubMed ID: 27166548 [TBL] [Abstract][Full Text] [Related]
30. Formulation and bacterial phototoxicity of curcumin loaded alginate foams for wound treatment applications: studies on curcumin and curcuminoides XLII. Hegge AB; Andersen T; Melvik JE; Bruzell E; Kristensen S; Tønnesen HH J Pharm Sci; 2011 Jan; 100(1):174-85. PubMed ID: 20575064 [TBL] [Abstract][Full Text] [Related]
31. Catanionic aggregates formed from drugs and lauric or capric acids enable prolonged release from gels. Dew N; Bramer T; Edsman K J Colloid Interface Sci; 2008 Jul; 323(2):386-94. PubMed ID: 18479696 [TBL] [Abstract][Full Text] [Related]
32. Pectin/Ethylcellulose as film coatings for colon-specific drug delivery: preparation and in vitro evaluation using 5-fluorouracil pellets. Wei H; Qing D; De-Ying C; Bai X; Fanli-Fang PDA J Pharm Sci Technol; 2007; 61(2):121-30. PubMed ID: 17479720 [TBL] [Abstract][Full Text] [Related]
33. Edible solid foams as porous substrates for inkjet-printable pharmaceuticals. Iftimi LD; Edinger M; Bar-Shalom D; Rantanen J; Genina N Eur J Pharm Biopharm; 2019 Mar; 136():38-47. PubMed ID: 30630061 [TBL] [Abstract][Full Text] [Related]
34. Microstructural characterization of nanocellulose foams prepared in the presence of cationic surfactants. Mariano M; Hantao LW; da Silva Bernardes J; Strauss M Carbohydr Polym; 2018 Sep; 195():153-162. PubMed ID: 29804963 [TBL] [Abstract][Full Text] [Related]
35. Thermogravimetric analysis for the determination of water release rate from microcrystalline cellulose dry powder and wet bead systems. Mayville FC; Wigent RJ; Schwartz JB Pharm Dev Technol; 2006; 11(3):359-70. PubMed ID: 16895846 [TBL] [Abstract][Full Text] [Related]
36. 3D structure of lightweight, conductive cellulose nanofiber foam. Lee H; Kim S; Shin S; Hyun J Carbohydr Polym; 2021 Feb; 253():117238. PubMed ID: 33278994 [TBL] [Abstract][Full Text] [Related]
37. Stable Aqueous Foams from Cellulose Nanocrystals and Methyl Cellulose. Hu Z; Xu R; Cranston ED; Pelton RH Biomacromolecules; 2016 Dec; 17(12):4095-4099. PubMed ID: 27936719 [TBL] [Abstract][Full Text] [Related]
38. Stabilizing nanocellulose-nonionic surfactant composite foams by delayed Ca-induced gelation. Gordeyeva KS; Fall AB; Hall S; Wicklein B; Bergström L J Colloid Interface Sci; 2016 Jun; 472():44-51. PubMed ID: 27003498 [TBL] [Abstract][Full Text] [Related]
39. A novel approach for dry powder coating of pellets with Ethylcellulose. Part I: Evaluation of film formulation and process set up. Albertini B; Bertoni S; Melegari C; Dolci LS; Passerini N Int J Pharm; 2017 Jan; 516(1-2):380-391. PubMed ID: 27894987 [TBL] [Abstract][Full Text] [Related]