These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 27847468)

  • 1. Synaptic Organization of Microglomerular Clusters in the Lateral and Medial Bulbs of the Honeybee Brain.
    Mota T; Kreissl S; Carrasco Durán A; Lefer D; Galizia G; Giurfa M
    Front Neuroanat; 2016; 10():103. PubMed ID: 27847468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microglomerular Synaptic Complexes in the Sky-Compass Network of the Honeybee Connect Parallel Pathways from the Anterior Optic Tubercle to the Central Complex.
    Held M; Berz A; Hensgen R; Muenz TS; Scholl C; Rössler W; Homberg U; Pfeiffer K
    Front Behav Neurosci; 2016; 10():186. PubMed ID: 27774056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel type of microglomerular synaptic complex in the polarization vision pathway of the locust brain.
    Träger U; Wagner R; Bausenwein B; Homberg U
    J Comp Neurol; 2008 Jan; 506(2):288-300. PubMed ID: 18022957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural organization and visual processing in the anterior optic tubercle of the honeybee brain.
    Mota T; Yamagata N; Giurfa M; Gronenberg W; Sandoz JC
    J Neurosci; 2011 Aug; 31(32):11443-56. PubMed ID: 21832175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptation of microglomerular complexes in the honeybee mushroom body lip to manipulations of behavioral maturation and sensory experience.
    Krofczik S; Khojasteh U; de Ibarra NH; Menzel R
    Dev Neurobiol; 2008 Jul; 68(8):1007-17. PubMed ID: 18446779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Environment- and age-dependent plasticity of synaptic complexes in the mushroom bodies of honeybee queens.
    Groh C; Ahrens D; Rossler W
    Brain Behav Evol; 2006; 68(1):1-14. PubMed ID: 16557021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of microglomerular structures in the mushroom body calyx of neopteran insects.
    Groh C; Rössler W
    Arthropod Struct Dev; 2011 Jul; 40(4):358-67. PubMed ID: 21185946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Age-related plasticity in the synaptic ultrastructure of neurons in the mushroom body calyx of the adult honeybee Apis mellifera.
    Groh C; Lu Z; Meinertzhagen IA; Rössler W
    J Comp Neurol; 2012 Oct; 520(15):3509-27. PubMed ID: 22430260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Volume and density of microglomeruli in the honey bee mushroom bodies do not predict performance on a foraging task.
    Van Nest BN; Wagner AE; Marrs GS; Fahrbach SE
    Dev Neurobiol; 2017 Sep; 77(9):1057-1071. PubMed ID: 28245532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synaptogenesis in the mushroom body calyx during metamorphosis in the honeybee Apis mellifera: an electron microscopic study.
    Ganeshina O; Vorobyev M; Menzel R
    J Comp Neurol; 2006 Aug; 497(6):876-97. PubMed ID: 16802331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experience-related reorganization of giant synapses in the lateral complex: Potential role in plasticity of the sky-compass pathway in the desert ant Cataglyphis fortis.
    Schmitt F; Stieb SM; Wehner R; Rössler W
    Dev Neurobiol; 2016 Apr; 76(4):390-404. PubMed ID: 26138802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuroarchitecture of the central complex in the brain of the honeybee: Neuronal cell types.
    Hensgen R; England L; Homberg U; Pfeiffer K
    J Comp Neurol; 2021 Jan; 529(1):159-186. PubMed ID: 32374034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A possible structural correlate of learning performance on a colour discrimination task in the brain of the bumblebee.
    Li L; MaBouDi H; Egertová M; Elphick MR; Chittka L; Perry CJ
    Proc Biol Sci; 2017 Oct; 284(1864):. PubMed ID: 28978727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transmedulla Neurons in the Sky Compass Network of the Honeybee (Apis mellifera) Are a Possible Site of Circadian Input.
    Zeller M; Held M; Bender J; Berz A; Heinloth T; Hellfritz T; Pfeiffer K
    PLoS One; 2015; 10(12):e0143244. PubMed ID: 26630286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Circuitry of Olfactory Projection Neurons in the Brain of the Honeybee,
    Zwaka H; Münch D; Manz G; Menzel R; Rybak J
    Front Neuroanat; 2016; 10():90. PubMed ID: 27746723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of Synaptic Microcircuits in the Mushroom Bodies of the Honeybee.
    Groh C; Rössler W
    Insects; 2020 Jan; 11(1):. PubMed ID: 31936165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A three-dimensional atlas of the honeybee central complex, associated neuropils and peptidergic layers of the central body.
    Kaiser A; Hensgen R; Tschirner K; Beetz E; Wüstenberg H; Pfaff M; Mota T; Pfeiffer K
    J Comp Neurol; 2022 Oct; 530(14):2416-2438. PubMed ID: 35593178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organization and neural connections of the lateral complex in the brain of the desert locust.
    Hensgen R; Göthe J; Jahn S; Hümmert S; Schneider KL; Takahashi N; Pegel U; Gotthardt S; Homberg U
    J Comp Neurol; 2021 Oct; 529(15):3533-3560. PubMed ID: 34216020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pitfalls of using confocal-microscopy based automated quantification of synaptic complexes in honeybee mushroom bodies (response to Peng and Yang 2016).
    Rössler W; Spaethe J; Groh C
    Sci Rep; 2017 Aug; 7(1):9786. PubMed ID: 28852015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Receptive field properties and intensity-response functions of polarization-sensitive neurons of the optic tubercle in gregarious and solitarious locusts.
    el Jundi B; Homberg U
    J Neurophysiol; 2012 Sep; 108(6):1695-710. PubMed ID: 22773775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.