These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Engineering the leucine biosynthetic pathway for isoamyl alcohol overproduction in Saccharomyces cerevisiae. Yuan J; Mishra P; Ching CB J Ind Microbiol Biotechnol; 2017 Jan; 44(1):107-117. PubMed ID: 27826727 [TBL] [Abstract][Full Text] [Related]
3. Metabolic engineering of Saccharomyces cerevisiae for the production of isobutanol and 3-methyl-1-butanol. Park SH; Kim S; Hahn JS Appl Microbiol Biotechnol; 2014 Nov; 98(21):9139-47. PubMed ID: 25280745 [TBL] [Abstract][Full Text] [Related]
4. Genetic and physiological analysis of branched-chain alcohols and isoamyl acetate production in Saccharomyces cerevisiae. Yoshimoto H; Fukushige T; Yonezawa T; Sone H Appl Microbiol Biotechnol; 2002 Aug; 59(4-5):501-8. PubMed ID: 12172617 [TBL] [Abstract][Full Text] [Related]
5. Genetic engineering to alter carbon flux for various higher alcohol productions by Saccharomyces cerevisiae for Chinese Baijiu fermentation. Li W; Chen SJ; Wang JH; Zhang CY; Shi Y; Guo XW; Chen YF; Xiao DG Appl Microbiol Biotechnol; 2018 Feb; 102(4):1783-1795. PubMed ID: 29305698 [TBL] [Abstract][Full Text] [Related]
6. Mitochondrial Compartmentalization Confers Specificity to the 2-Ketoacid Recursive Pathway: Increasing Isopentanol Production in Hammer SK; Zhang Y; Avalos JL ACS Synth Biol; 2020 Mar; 9(3):546-555. PubMed ID: 32049515 [TBL] [Abstract][Full Text] [Related]
7. Genetic engineering to enhance the Ehrlich pathway and alter carbon flux for increased isobutanol production from glucose by Saccharomyces cerevisiae. Kondo T; Tezuka H; Ishii J; Matsuda F; Ogino C; Kondo A J Biotechnol; 2012 May; 159(1-2):32-7. PubMed ID: 22342368 [TBL] [Abstract][Full Text] [Related]
8. Isolation and characterization of awamori yeast mutants with L-leucine accumulation that overproduce isoamyl alcohol. Takagi H; Hashida K; Watanabe D; Nasuno R; Ohashi M; Iha T; Nezuo M; Tsukahara M J Biosci Bioeng; 2015 Feb; 119(2):140-7. PubMed ID: 25060730 [TBL] [Abstract][Full Text] [Related]
9. A 13C nuclear magnetic resonance investigation of the metabolism of leucine to isoamyl alcohol in Saccharomyces cerevisiae. Dickinson JR; Lanterman MM; Danner DJ; Pearson BM; Sanz P; Harrison SJ; Hewlins MJ J Biol Chem; 1997 Oct; 272(43):26871-8. PubMed ID: 9341119 [TBL] [Abstract][Full Text] [Related]
10. Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols. Avalos JL; Fink GR; Stephanopoulos G Nat Biotechnol; 2013 Apr; 31(4):335-41. PubMed ID: 23417095 [TBL] [Abstract][Full Text] [Related]
11. Cellular and molecular engineering of yeast Saccharomyces cerevisiae for advanced biobutanol production. Kuroda K; Ueda M FEMS Microbiol Lett; 2016 Feb; 363(3):. PubMed ID: 26712533 [TBL] [Abstract][Full Text] [Related]
12. Biosensor for branched-chain amino acid metabolism in yeast and applications in isobutanol and isopentanol production. Zhang Y; Cortez JD; Hammer SK; Carrasco-López C; García Echauri SÁ; Wiggins JB; Wang W; Avalos JL Nat Commun; 2022 Jan; 13(1):270. PubMed ID: 35022416 [TBL] [Abstract][Full Text] [Related]
13. Microbial engineering for the production of isobutanol: current status and future directions. Lakshmi NM; Binod P; Sindhu R; Awasthi MK; Pandey A Bioengineered; 2021 Dec; 12(2):12308-12321. PubMed ID: 34927549 [TBL] [Abstract][Full Text] [Related]
14. Enhanced production of isoamyl alcohol and isoamyl acetate by ubiquitination-deficient Saccharomyces cerevisiae mutants. Abe F; Horikoshi K Cell Mol Biol Lett; 2005; 10(3):383-8. PubMed ID: 16217550 [TBL] [Abstract][Full Text] [Related]
15. Elimination of biosynthetic pathways for l-valine and l-isoleucine in mitochondria enhances isobutanol production in engineered Saccharomyces cerevisiae. Lee KM; Kim SK; Lee YG; Park KH; Seo JH Bioresour Technol; 2018 Nov; 268():271-277. PubMed ID: 30081287 [TBL] [Abstract][Full Text] [Related]
16. Optogenetic regulation of engineered cellular metabolism for microbial chemical production. Zhao EM; Zhang Y; Mehl J; Park H; Lalwani MA; Toettcher JE; Avalos JL Nature; 2018 Mar; 555(7698):683-687. PubMed ID: 29562237 [TBL] [Abstract][Full Text] [Related]
17. Isobutanol production in engineered Saccharomyces cerevisiae by overexpression of 2-ketoisovalerate decarboxylase and valine biosynthetic enzymes. Lee WH; Seo SO; Bae YH; Nan H; Jin YS; Seo JH Bioprocess Biosyst Eng; 2012 Nov; 35(9):1467-75. PubMed ID: 22543927 [TBL] [Abstract][Full Text] [Related]
18. Biosynthesis of higher alcohol flavour compounds by the yeast Saccharomyces cerevisiae: impact of oxygen availability and responses to glucose pulse in minimal growth medium with leucine as sole nitrogen source. Espinosa Vidal E; de Morais MA; François JM; de Billerbeck GM Yeast; 2015 Jan; 32(1):47-56. PubMed ID: 25274068 [TBL] [Abstract][Full Text] [Related]
19. Xylose assimilation enhances the production of isobutanol in engineered Saccharomyces cerevisiae. Lane S; Zhang Y; Yun EJ; Ziolkowski L; Zhang G; Jin YS; Avalos JL Biotechnol Bioeng; 2020 Feb; 117(2):372-381. PubMed ID: 31631318 [TBL] [Abstract][Full Text] [Related]
20. Construction of an artificial pathway for isobutanol biosynthesis in the cytosol of Saccharomyces cerevisiae. Matsuda F; Kondo T; Ida K; Tezuka H; Ishii J; Kondo A Biosci Biotechnol Biochem; 2012; 76(11):2139-41. PubMed ID: 23132567 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]