These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 27848176)

  • 1. Variability Analysis of Therapeutic Movements using Wearable Inertial Sensors.
    López-Nava IH; Arnrich B; Muñoz-Meléndez A; Güneysu A
    J Med Syst; 2017 Jan; 41(1):7. PubMed ID: 27848176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recognizing upper limb movements with wrist worn inertial sensors using k-means clustering classification.
    Biswas D; Cranny A; Gupta N; Maharatna K; Achner J; Klemke J; Jöbges M; Ortmann S
    Hum Mov Sci; 2015 Apr; 40():59-76. PubMed ID: 25528632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactive wearable systems for upper body rehabilitation: a systematic review.
    Wang Q; Markopoulos P; Yu B; Chen W; Timmermans A
    J Neuroeng Rehabil; 2017 Mar; 14(1):20. PubMed ID: 28284228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Would a thermal sensor improve arm motion classification accuracy of a single wrist-mounted inertial device?
    Lui J; Menon C
    Biomed Eng Online; 2019 May; 18(1):53. PubMed ID: 31064354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of Upper Limb Movement Impairments after Stroke Using Wearable Inertial Sensing.
    Schwarz A; Bhagubai MMC; Wolterink G; Held JPO; Luft AR; Veltink PH
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32846958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of upper limb use in children with typical development and neurodevelopmental disorders by inertial sensors: a systematic review.
    Braito I; Maselli M; Sgandurra G; Inguaggiato E; Beani E; Cecchi F; Cioni G; Boyd R
    J Neuroeng Rehabil; 2018 Nov; 15(1):94. PubMed ID: 30400992
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A reliability study of the new sensors for movement analysis (SHARIF-HMIS).
    Abedi M; Manshadi FD; Zavieh MK; Ashouri S; Azimi H; Parnanpour M
    J Bodyw Mov Ther; 2016 Apr; 20(2):341-5. PubMed ID: 27210852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying compensatory movement patterns in the upper extremity using a wearable sensor system.
    Ranganathan R; Wang R; Dong B; Biswas S
    Physiol Meas; 2017 Nov; 38(12):2222-2234. PubMed ID: 29099724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studying upper-limb kinematics using inertial sensors: a cross-sectional study.
    Roldán-Jiménez C; Cuesta-Vargas AI
    BMC Res Notes; 2015 Oct; 8():532. PubMed ID: 26433573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Upper limb portable motion analysis system based on inertial technology for neurorehabilitation purposes.
    Pérez R; Costa Ú; Torrent M; Solana J; Opisso E; Cáceres C; Tormos JM; Medina J; Gómez EJ
    Sensors (Basel); 2010; 10(12):10733-51. PubMed ID: 22163496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advances in motion and electromyography based wearable technology for upper extremity function rehabilitation: A review.
    Sethi A; Ting J; Allen M; Clark W; Weber D
    J Hand Ther; 2020; 33(2):180-187. PubMed ID: 32279878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of In-Cloth versus On-Skin Sensors for Measuring Trunk and Upper Arm Postures and Movements.
    Hoareau D; Fan X; Abtahi F; Yang L
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using Wearable Sensors and Machine Learning Models to Separate Functional Upper Extremity Use From Walking-Associated Arm Movements.
    McLeod A; Bochniewicz EM; Lum PS; Holley RJ; Emmer G; Dromerick AW
    Arch Phys Med Rehabil; 2016 Feb; 97(2):224-31. PubMed ID: 26435302
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detecting Elementary Arm Movements by Tracking Upper Limb Joint Angles With MARG Sensors.
    Mazomenos EB; Biswas D; Cranny A; Rajan A; Maharatna K; Achner J; Klemke J; Jobges M; Ortmann S; Langendorfer P
    IEEE J Biomed Health Inform; 2016 Jul; 20(4):1088-99. PubMed ID: 25966489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temporal-spatial reach parameters derived from inertial sensors: Comparison to 3D marker-based motion capture.
    Cahill-Rowley K; Rose J
    J Biomech; 2017 Feb; 52():11-16. PubMed ID: 28010947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation of an Inertial Sensor System for Physical Therapists to Quantify Movement Coordination During Functional Tasks.
    Tulipani L; Boocock MG; Lomond KV; El-Gohary M; Reid DA; Henry SM
    J Appl Biomech; 2018 Feb; 34(1):23-30. PubMed ID: 28787248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measuring upper limb function in children with hemiparesis with 3D inertial sensors.
    Newman CJ; Bruchez R; Roches S; Jequier Gygax M; Duc C; Dadashi F; Massé F; Aminian K
    Childs Nerv Syst; 2017 Dec; 33(12):2159-2168. PubMed ID: 28842792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Muscle activation patterns in point-to-point and reversal movements in healthy, older subjects and in subjects with Parkinson's disease.
    Pfann KD; Robichaud JA; Gottlieb GL; Comella CL; Brandabur M; Corcos DM
    Exp Brain Res; 2004 Jul; 157(1):67-78. PubMed ID: 14991213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Upper Limb Position Tracking with a Single Inertial Sensor Using Dead Reckoning Method with Drift Correction Techniques.
    Bai L; Pepper MG; Wang Z; Mulvenna MD; Bond RR; Finlay D; Zheng H
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wavelet-Based Analysis of Physical Activity and Sleep Movement Data from Wearable Sensors among Obese Adults.
    Soangra R; Krishnan V
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31461827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.