These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 27848941)

  • 1. Indirect calorimetry: an indispensable tool to understand and predict obesity.
    Lam YY; Ravussin E
    Eur J Clin Nutr; 2017 Mar; 71(3):318-322. PubMed ID: 27848941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic response to fasting predicts weight gain during low-protein overfeeding in lean men: further evidence for spendthrift and thrifty metabolic phenotypes.
    Hollstein T; Ando T; Basolo A; Krakoff J; Votruba SB; Piaggi P
    Am J Clin Nutr; 2019 Sep; 110(3):593-604. PubMed ID: 31172178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low resting and sleeping energy expenditure and fat use do not contribute to obesity in women.
    Weinsier RL; Hunter GR; Zuckerman PA; Darnell BE
    Obes Res; 2003 Aug; 11(8):937-44. PubMed ID: 12917497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Human Thrifty Phenotype Associated With Less Weight Loss During Caloric Restriction.
    Reinhardt M; Thearle MS; Ibrahim M; Hohenadel MG; Bogardus C; Krakoff J; Votruba SB
    Diabetes; 2015 Aug; 64(8):2859-67. PubMed ID: 25964395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fasting substrate oxidation at rest assessed by indirect calorimetry: is prior dietary macronutrient level and composition a confounder?
    Miles-Chan JL; Dulloo AG; Schutz Y
    Int J Obes (Lond); 2015 Jul; 39(7):1114-7. PubMed ID: 25771930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Indirect calorimetry and nutritional problems in clinical practice.
    Battezzati A; Viganò R
    Acta Diabetol; 2001; 38(1):1-5. PubMed ID: 11487171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pathogenesis of obesity and diabetes mellitus: insights provided by indirect calorimetry in humans.
    Perseghin G
    Acta Diabetol; 2001; 38(1):7-21. PubMed ID: 11487178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy expenditure in the etiology of human obesity: spendthrift and thrifty metabolic phenotypes and energy-sensing mechanisms.
    Piaggi P; Vinales KL; Basolo A; Santini F; Krakoff J
    J Endocrinol Invest; 2018 Jan; 41(1):83-89. PubMed ID: 28741280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic predictors of obesity. Contribution of resting energy expenditure, thermic effect of food, and fuel utilization to four-year weight gain of post-obese and never-obese women.
    Weinsier RL; Nelson KM; Hensrud DD; Darnell BE; Hunter GR; Schutz Y
    J Clin Invest; 1995 Mar; 95(3):980-5. PubMed ID: 7883999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxygen Consumption Rate and Energy Expenditure in Mice: Indirect Calorimetry.
    Kim ER; Tong Q
    Methods Mol Biol; 2017; 1566():135-143. PubMed ID: 28244047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic Determinants of Weight Gain in Humans.
    Piaggi P
    Obesity (Silver Spring); 2019 May; 27(5):691-699. PubMed ID: 31012296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Issues in Measuring and Interpreting Energy Balance and Its Contribution to Obesity.
    Fernández-Verdejo R; Aguirre C; Galgani JE
    Curr Obes Rep; 2019 Jun; 8(2):88-97. PubMed ID: 30903595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Free-living activity energy expenditure in women successful and unsuccessful at maintaining a normal body weight.
    Weinsier RL; Hunter GR; Desmond RA; Byrne NM; Zuckerman PA; Darnell BE
    Am J Clin Nutr; 2002 Mar; 75(3):499-504. PubMed ID: 11864855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A pocket-sized metabolic analyzer for assessment of resting energy expenditure.
    Zhao D; Xian X; Terrera M; Krishnan R; Miller D; Bridgeman D; Tao K; Zhang L; Tsow F; Forzani ES; Tao N
    Clin Nutr; 2014 Apr; 33(2):341-7. PubMed ID: 23827182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduced adaptive thermogenesis during acute protein-imbalanced overfeeding is a metabolic hallmark of the human thrifty phenotype.
    Hollstein T; Basolo A; Ando T; Krakoff J; Piaggi P
    Am J Clin Nutr; 2021 Oct; 114(4):1396-1407. PubMed ID: 34225360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic Phenotyping in Mice with NASH Using Indirect Calorimetry.
    Ni B; Chen S; Farrar JS; Celi FS
    Methods Mol Biol; 2022; 2455():223-232. PubMed ID: 35212997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of energy expenditure in rodents by indirect calorimetry.
    Alberts P; Johansson BG; McArthur RA
    Curr Protoc Neurosci; 2006 Aug; Chapter 9():Unit9.23D. PubMed ID: 18428652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Application of indirect calorimetry in monitoring feeding of low birth-weight preterm infants].
    Krämer T; Böhler T; Janecke AR; Hoffmann GF; Linderkamp O
    Klin Padiatr; 1999; 211(5):389-93. PubMed ID: 10572895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Indirect calorimetry: methodology, instruments and clinical application.
    da Rocha EE; Alves VG; da Fonseca RB
    Curr Opin Clin Nutr Metab Care; 2006 May; 9(3):247-56. PubMed ID: 16607124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of circadian variation in energy expenditure, within-subject variation and weight reduction on thermic effect of food.
    Miles CW; Wong NP; Rumpler WV; Conway J
    Eur J Clin Nutr; 1993 Apr; 47(4):274-84. PubMed ID: 8491165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.