These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 27848946)

  • 1. Guidance for the utility of linear models in meta-analysis of genetic association studies of binary phenotypes.
    Cook JP; Mahajan A; Morris AP
    Eur J Hum Genet; 2017 Feb; 25(2):240-245. PubMed ID: 27848946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies.
    Zhou W; Nielsen JB; Fritsche LG; Dey R; Gabrielsen ME; Wolford BN; LeFaive J; VandeHaar P; Gagliano SA; Gifford A; Bastarache LA; Wei WQ; Denny JC; Lin M; Hveem K; Kang HM; Abecasis GR; Willer CJ; Lee S
    Nat Genet; 2018 Sep; 50(9):1335-1341. PubMed ID: 30104761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control for Population Structure and Relatedness for Binary Traits in Genetic Association Studies via Logistic Mixed Models.
    Chen H; Wang C; Conomos MP; Stilp AM; Li Z; Sofer T; Szpiro AA; Chen W; Brehm JM; Celedón JC; Redline S; Papanicolaou GJ; Thornton TA; Laurie CC; Rice K; Lin X
    Am J Hum Genet; 2016 Apr; 98(4):653-66. PubMed ID: 27018471
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SCOPA and META-SCOPA: software for the analysis and aggregation of genome-wide association studies of multiple correlated phenotypes.
    Mägi R; Suleimanov YV; Clarke GM; Kaakinen M; Fischer K; Prokopenko I; Morris AP
    BMC Bioinformatics; 2017 Jan; 18(1):25. PubMed ID: 28077070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of mixed model based approaches for correcting for population substructure with application to extreme phenotype sampling.
    Onifade M; Roy-Gagnon MH; Parent MÉ; Burkett KM
    BMC Genomics; 2022 Feb; 23(1):98. PubMed ID: 35120458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient penalized generalized linear mixed models for variable selection and genetic risk prediction in high-dimensional data.
    St-Pierre J; Oualkacha K; Bhatnagar SR
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36708013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic model selection in genome-wide association studies: robust methods and the use of meta-analysis.
    Bagos PG
    Stat Appl Genet Mol Biol; 2013 Jun; 12(3):285-308. PubMed ID: 23629457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Defining the power limits of genome-wide association scan meta-analyses.
    Chapman K; Ferreira T; Morris A; Asimit J; Zeggini E
    Genet Epidemiol; 2011 Dec; 35(8):781-9. PubMed ID: 21922540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robust meta-analysis of biobank-based genome-wide association studies with unbalanced binary phenotypes.
    Dey R; Nielsen JB; Fritsche LG; Zhou W; Zhu H; Willer CJ; Lee S
    Genet Epidemiol; 2019 Jul; 43(5):462-476. PubMed ID: 30793809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Power considerations for λ inflation factor in meta-analyses of genome-wide association studies.
    Georgiopoulos G; Evangelou E
    Genet Res (Camb); 2016 May; 98():e9. PubMed ID: 27193946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple phenotype association tests using summary statistics in genome-wide association studies.
    Liu Z; Lin X
    Biometrics; 2018 Mar; 74(1):165-175. PubMed ID: 28653391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Population structure in genetic studies: Confounding factors and mixed models.
    Sul JH; Martin LS; Eskin E
    PLoS Genet; 2018 Dec; 14(12):e1007309. PubMed ID: 30589851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Semiparametric Allelic Tests for Mapping Multiple Phenotypes: Binomial Regression and Mahalanobis Distance.
    Majumdar A; Witte JS; Ghosh S
    Genet Epidemiol; 2015 Dec; 39(8):635-50. PubMed ID: 26493781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PSEA: Phenotype Set Enrichment Analysis--a new method for analysis of multiple phenotypes.
    Ried JS; Döring A; Oexle K; Meisinger C; Winkelmann J; Klopp N; Meitinger T; Peters A; Suhre K; Wichmann HE; Gieger C
    Genet Epidemiol; 2012 Apr; 36(3):244-52. PubMed ID: 22714936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bayesian multiple logistic regression for case-control GWAS.
    Banerjee S; Zeng L; Schunkert H; Söding J
    PLoS Genet; 2018 Dec; 14(12):e1007856. PubMed ID: 30596640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Meta-analysis approaches to combine multiple gene set enrichment studies.
    Lu W; Wang X; Zhan X; Gazdar A
    Stat Med; 2018 Feb; 37(4):659-672. PubMed ID: 29052247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of a Two-Stage Approach in Trans-Ethnic Meta-Analysis in Genome-Wide Association Studies.
    Hong J; Lunetta KL; Cupples LA; Dupuis J; Liu CT
    Genet Epidemiol; 2016 May; 40(4):284-92. PubMed ID: 27061095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bayesian meta-analysis across genome-wide association studies of diverse phenotypes.
    Trochet H; Pirinen M; Band G; Jostins L; McVean G; Spencer CCA
    Genet Epidemiol; 2019 Jul; 43(5):532-547. PubMed ID: 30920090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel random effect model for GWAS meta-analysis and its application to trans-ethnic meta-analysis.
    Shi J; Lee S
    Biometrics; 2016 Sep; 72(3):945-54. PubMed ID: 26916671
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel association test for multiple secondary phenotypes from a case-control GWAS.
    Ray D; Basu S
    Genet Epidemiol; 2017 Jul; 41(5):413-426. PubMed ID: 28393390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.