BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 27849046)

  • 1. Quantum dot-like excitonic behavior in individual single walled-carbon nanotubes.
    Wang X; Alexander-Webber JA; Jia W; Reid BP; Stranks SD; Holmes MJ; Chan CC; Deng C; Nicholas RJ; Taylor RA
    Sci Rep; 2016 Nov; 6():37167. PubMed ID: 27849046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bright, long-lived and coherent excitons in carbon nanotube quantum dots.
    Hofmann MS; Glückert JT; Noé J; Bourjau C; Dehmel R; Högele A
    Nat Nanotechnol; 2013 Jul; 8(7):502-5. PubMed ID: 23812185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of exciton dimensionality on spectral diffusion of single-walled carbon nanotubes.
    Ma X; Roslyak O; Wang F; Duque JG; Piryatinski A; Doorn SK; Htoon H
    ACS Nano; 2014 Oct; 8(10):10613-20. PubMed ID: 25251324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Excitons in Single-Walled Carbon Nanotubes and Their Dynamics.
    Amori AR; Hou Z; Krauss TD
    Annu Rev Phys Chem; 2018 Apr; 69():81-99. PubMed ID: 29401037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct observation of deep excitonic states in the photoluminescence spectra of single-walled carbon nanotubes.
    Kiowski O; Arnold K; Lebedkin S; Hennrich F; Kappes MM
    Phys Rev Lett; 2007 Dec; 99(23):237402. PubMed ID: 18233410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum yield in polymer wrapped single walled carbon nanotubes: a computational model.
    Djokić DM; Goswami A
    Nanotechnology; 2017 Nov; 28(46):465204. PubMed ID: 29059055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple exciton generation and recombination in carbon nanotubes and nanocrystals.
    Kanemitsu Y
    Acc Chem Res; 2013 Jun; 46(6):1358-66. PubMed ID: 23421584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superlocalization of Excitons in Carbon Nanotubes at Cryogenic Temperature.
    Raynaud C; Claude T; Borel A; Amara MR; Graf A; Zaumseil J; Lauret JS; Chassagneux Y; Voisin C
    Nano Lett; 2019 Oct; 19(10):7210-7216. PubMed ID: 31487461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hyperspectral imaging of exciton photoluminescence in individual carbon nanotubes controlled by high magnetic fields.
    Alexander-Webber JA; Faugeras C; Kossacki P; Potemski M; Wang X; Kim HD; Stranks SD; Taylor RA; Nicholas RJ
    Nano Lett; 2014 Sep; 14(9):5194-200. PubMed ID: 25158099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Excitons in semiconducting carbon nanotubes: diameter-dependent photoluminescence spectra.
    Kanemitsu Y
    Phys Chem Chem Phys; 2011 Sep; 13(33):14879-88. PubMed ID: 21735026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Excited-State Interaction of Semiconducting Single-Walled Carbon Nanotubes with Their Wrapping Polymers.
    Kahmann S; Salazar Rios JM; Zink M; Allard S; Scherf U; Dos Santos MC; Brabec CJ; Loi MA
    J Phys Chem Lett; 2017 Nov; 8(22):5666-5672. PubMed ID: 29099192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purcell-enhanced quantum yield from carbon nanotube excitons coupled to plasmonic nanocavities.
    Luo Y; Ahmadi ED; Shayan K; Ma Y; Mistry KS; Zhang C; Hone J; Blackburn JL; Strauf S
    Nat Commun; 2017 Nov; 8(1):1413. PubMed ID: 29123125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoluminescence Imaging of Polyfluorene Surface Structures on Semiconducting Carbon Nanotubes: Implications for Thin Film Exciton Transport.
    Hartmann NF; Pramanik R; Dowgiallo AM; Ihly R; Blackburn JL; Doorn SK
    ACS Nano; 2016 Dec; 10(12):11449-11458. PubMed ID: 27936574
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Length-dependent optical effects in single walled carbon nanotubes.
    Rajan A; Strano MS; Heller DA; Hertel T; Schulten K
    J Phys Chem B; 2008 May; 112(19):6211-3. PubMed ID: 18327930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photophysics of individual single-walled carbon nanotubes.
    Carlson LJ; Krauss TD
    Acc Chem Res; 2008 Feb; 41(2):235-43. PubMed ID: 18281946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing the ultrafast dynamics of excitons in single semiconducting carbon nanotubes.
    Birkmeier K; Hertel T; Hartschuh A
    Nat Commun; 2022 Oct; 13(1):6290. PubMed ID: 36271091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding the excitation wavelength dependent spectral shift and large exciton binding energy of tungsten disulfide quantum dots and its interaction with single-walled carbon nanotubes.
    Bora A; Mawlong LPL; Das R; Giri PK
    J Colloid Interface Sci; 2020 Mar; 561():519-532. PubMed ID: 31740135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Defect-induced photoluminescence from dark excitonic states in individual single-walled carbon nanotubes.
    Harutyunyan H; Gokus T; Green AA; Hersam MC; Allegrini M; Hartschuh A
    Nano Lett; 2009 May; 9(5):2010-4. PubMed ID: 19331347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonlinear photoluminescence spectroscopy of carbon nanotubes with localized exciton states.
    Iwamura M; Akizuki N; Miyauchi Y; Mouri S; Shaver J; Gao Z; Cognet L; Lounis B; Matsuda K
    ACS Nano; 2014 Nov; 8(11):11254-60. PubMed ID: 25331628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diffusion limited photoluminescence quantum yields in 1-D semiconductors: single-wall carbon nanotubes.
    Hertel T; Himmelein S; Ackermann T; Stich D; Crochet J
    ACS Nano; 2010 Dec; 4(12):7161-8. PubMed ID: 21105744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.