These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 27849076)

  • 1. Chain conformation-dependent thermal conductivity of amorphous polymer blends: the impact of inter- and intra-chain interactions.
    Wei X; Zhang T; Luo T
    Phys Chem Chem Phys; 2016 Nov; 18(47):32146-32154. PubMed ID: 27849076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of Chain Morphology and Stiffness in Thermal Conductivity of Amorphous Polymers.
    Zhang T; Luo T
    J Phys Chem B; 2016 Feb; 120(4):803-12. PubMed ID: 26751002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chain length effect on thermal transport in amorphous polymers and a structure-thermal conductivity relation.
    Wei X; Luo T
    Phys Chem Chem Phys; 2019 Jul; 21(28):15523-15530. PubMed ID: 31263807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High thermal conductivity in amorphous polymer blends by engineered interchain interactions.
    Kim GH; Lee D; Shanker A; Shao L; Kwon MS; Gidley D; Kim J; Pipe KP
    Nat Mater; 2015 Mar; 14(3):295-300. PubMed ID: 25419813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning the thermal conductivity of solar cell polymers through side chain engineering.
    Guo Z; Lee D; Liu Y; Sun F; Sliwinski A; Gao H; Burns PC; Huang L; Luo T
    Phys Chem Chem Phys; 2014 May; 16(17):7764-71. PubMed ID: 24643840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of side-chain π-π stacking on the thermal conductivity switching in azobenzene polymers: a molecular dynamics simulation study.
    Wei X; Luo T
    Phys Chem Chem Phys; 2022 May; 24(17):10272-10279. PubMed ID: 35437555
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of the block ratio on the thermal conductivity of amorphous polyethylene-polypropylene (PE-PP) diblock copolymers.
    Wei X; Luo T
    Phys Chem Chem Phys; 2018 Aug; 20(31):20534-20539. PubMed ID: 30046783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blends of POSS-PEO(n=4)(8) and high molecular weight poly(ethylene oxide) as solid polymer electrolytes for lithium batteries.
    Zhang H; Kulkarni S; Wunder SL
    J Phys Chem B; 2007 Apr; 111(14):3583-90. PubMed ID: 17388529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal Transport in Quasi-1D van der Waals Crystal Ta
    Zhang Q; Liu C; Liu X; Liu J; Cui Z; Zhang Y; Yang L; Zhao Y; Xu TT; Chen Y; Wei J; Mao Z; Li D
    ACS Nano; 2018 Mar; 12(3):2634-2642. PubMed ID: 29474086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal Conductance in Cross-linked Polymers: Effects of Non-Bonding Interactions.
    Rashidi V; Coyle EJ; Sebeck K; Kieffer J; Pipe KP
    J Phys Chem B; 2017 May; 121(17):4600-4609. PubMed ID: 28362103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modifying thermal transport in electrically conducting polymers: effects of stretching and combining polymer chains.
    Pal S; Balasubramanian G; Puri IK
    J Chem Phys; 2012 Jan; 136(4):044901. PubMed ID: 22299913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of boundary chain folding on thermal conductivity of lamellar amorphous polyethylene.
    Ouyang Y; Zhang Z; Xi Q; Jiang P; Ren W; Li N; Zhou J; Chen J
    RSC Adv; 2019 Oct; 9(57):33549-33557. PubMed ID: 35529136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High thermal conductivity in electrostatically engineered amorphous polymers.
    Shanker A; Li C; Kim GH; Gidley D; Pipe KP; Kim J
    Sci Adv; 2017 Jul; 3(7):e1700342. PubMed ID: 28782022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anisotropy of the thermal conductivity of stretched amorphous polystyrene in supercritical carbon dioxide studied by reverse nonequilibrium molecular dynamics simulations.
    Algaer EA; Alaghemandi M; Böhm MC; Müller-Plathe F
    J Phys Chem B; 2009 Nov; 113(44):14596-603. PubMed ID: 19863137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The unexpected non-monotonic inter-layer bonding dependence of the thermal conductivity of bilayered boron nitride.
    Gao Y; Zhang X; Jing Y; Hu M
    Nanoscale; 2015 Apr; 7(16):7143-50. PubMed ID: 25811773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shear rheology and structural properties of chemically identical dendrimer-linear polymer blends through molecular dynamics simulations.
    Hajizadeh E; Todd BD; Daivis PJ
    J Chem Phys; 2014 Nov; 141(19):194905. PubMed ID: 25416910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoparticle induced miscibility in LCST polymer blends: critically assessing the enthalpic and entropic effects.
    Xavier P; Rao P; Bose S
    Phys Chem Chem Phys; 2016 Jan; 18(1):47-64. PubMed ID: 26601893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced energy transport owing to nonlinear interface interaction.
    Su R; Yuan Z; Wang J; Zheng Z
    Sci Rep; 2016 Jan; 6():19628. PubMed ID: 26787363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A molecular dynamics investigation of the planar elongational rheology of chemically identical dendrimer-linear polymer blends.
    Hajizadeh E; Todd BD; Daivis PJ
    J Chem Phys; 2015 May; 142(17):174911. PubMed ID: 25956124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal transport in electrospun vinyl polymer nanofibers: effects of molecular weight and side groups.
    Zhang Y; Zhang X; Yang L; Zhang Q; Fitzgerald ML; Ueda A; Chen Y; Mu R; Li D; Bellan LM
    Soft Matter; 2018 Dec; 14(47):9534-9541. PubMed ID: 30376032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.