These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 27849547)

  • 1. The Impact of Social Behavior on the Attenuation and Delay of Bacterial Nanonetworks.
    Unluturk BD; Balasubramaniam S; Akyildiz IF
    IEEE Trans Nanobioscience; 2016 Dec; 15(8):959-969. PubMed ID: 27849547
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-hop conjugation based bacteria nanonetworks.
    Balasubramaniam S; Lio' P
    IEEE Trans Nanobioscience; 2013 Mar; 12(1):47-59. PubMed ID: 23392386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards Concurrent Data Transmission: Exploiting Plasmid Diversity by Bacterial Conjugation.
    Unluturk BD; Islam MS; Balasubramaniam S; Ivanov S
    IEEE Trans Nanobioscience; 2017 Jun; 16(4):287-298. PubMed ID: 28541217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Propagation Delay and Loss Analysis for Bacteria-Based Nanocommunications.
    Petrov V; Moltchanov D; Akyildiz IF; Koucheryavy Y
    IEEE Trans Nanobioscience; 2016 Oct; 15(7):627-638. PubMed ID: 27429440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On Modeling Information Spreading in Bacterial Nano-Networks Based on Plasmid Conjugation.
    Castorina G; Galluccio L; Palazzo S
    IEEE Trans Nanobioscience; 2016 Sep; 15(6):567-575. PubMed ID: 27479975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. D-MoSK Modulation in Molecular Communications.
    Kabir MH; Islam SM; Kwak KS
    IEEE Trans Nanobioscience; 2015 Sep; 14(6):680-3. PubMed ID: 26335557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Capacity and Delay Spread in Multilayer Diffusion-Based Molecular Communication (DBMC) Channel.
    Md Mustam S; Syed-Yusof SK; Zubair S
    IEEE Trans Nanobioscience; 2016 Oct; 15(7):599-612. PubMed ID: 27893397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoscale communication with molecular arrays in nanonetworks.
    Atakan B; Galmes S; Akan OB
    IEEE Trans Nanobioscience; 2012 Jun; 11(2):149-60. PubMed ID: 22287254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanonetworks in Biomedical Applications.
    Marzo JL; Jornet JM; Pierobon M
    Curr Drug Targets; 2019; 20(8):800-807. PubMed ID: 30648507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Collision bottleneck throughput in bacterial conjugation-based nanonetworks.
    Islam N; Misra S
    IEEE Trans Nanobioscience; 2015 Jan; 14(1):112-20. PubMed ID: 25330493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multicellular behavior in bacteria: communication, cooperation, competition and cheating.
    Dunny GM; Brickman TJ; Dworkin M
    Bioessays; 2008 Apr; 30(4):296-8. PubMed ID: 18348154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A communication theoretical analysis of FRET-based mobile ad hoc molecular nanonetworks.
    Kuscu M; Akan OB
    IEEE Trans Nanobioscience; 2014 Sep; 13(3):255-66. PubMed ID: 25014963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monte Carlo Analysis of Molecule Absorption Probabilities in Diffusion-Based Nanoscale Communication Systems with Multiple Receivers.
    Arifler D; Arifler D
    IEEE Trans Nanobioscience; 2017 Apr; 16(3):157-165. PubMed ID: 28368824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacterial Relay for Energy-Efficient Molecular Communications.
    Qiu S; Haselmayr W; Li B; Zhao C; Guo W
    IEEE Trans Nanobioscience; 2017 Oct; 16(7):555-562. PubMed ID: 28829314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. "Catch the Pendulum": The Problem of Asymmetric Data Delivery in Electromagnetic Nanonetworks.
    Islam N; Misra S
    IEEE Trans Nanobioscience; 2016 Sep; 15(6):576-584. PubMed ID: 27723598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Novel Electrical Model for Advection-Diffusion-Based Molecular Communication in Nanonetworks.
    Azadi M; Abouei J
    IEEE Trans Nanobioscience; 2016 Apr; 15(3):246-57. PubMed ID: 27046879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Analytical Model for Molecular Propagation in Nanocommunication via Filaments Using Relay-Enabled Nodes.
    Darchinimaragheh K; Alfa AS
    IEEE Trans Nanobioscience; 2015 Dec; 14(8):870-81. PubMed ID: 26529773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Statistical Analysis of Received Signal and Error Performance for Mobile Molecular Communication.
    Huang S; Lin L; Yan H; Xu J; Liu F
    IEEE Trans Nanobioscience; 2019 Jul; 18(3):415-427. PubMed ID: 30932843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A multiple-relaxation-time lattice-boltzmann model for bacterial chemotaxis: effects of initial concentration, diffusion, and hydrodynamic dispersion on traveling bacterial bands.
    Yan Z; Hilpert M
    Bull Math Biol; 2014 Oct; 76(10):2449-75. PubMed ID: 25223537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FRET-based nanoscale point-to-point and broadcast communications with multi-exciton transmission and channel routing.
    Kuscu M; Akan OB
    IEEE Trans Nanobioscience; 2014 Sep; 13(3):315-26. PubMed ID: 25095261
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.