These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

644 related articles for article (PubMed ID: 27849583)

  • 1. Quorum sensing controls the Pseudomonas aeruginosa CRISPR-Cas adaptive immune system.
    Høyland-Kroghsbo NM; Paczkowski J; Mukherjee S; Broniewski J; Westra E; Bondy-Denomy J; Bassler BL
    Proc Natl Acad Sci U S A; 2017 Jan; 114(1):131-135. PubMed ID: 27849583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature, by Controlling Growth Rate, Regulates CRISPR-Cas Activity in Pseudomonas aeruginosa.
    Høyland-Kroghsbo NM; Muñoz KA; Bassler BL
    mBio; 2018 Nov; 9(6):. PubMed ID: 30425154
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lactonase SsoPox modulates CRISPR-Cas expression in gram-negative proteobacteria using AHL-based quorum sensing systems.
    Mion S; Plener L; Rémy B; Daudé D; Chabrière É
    Res Microbiol; 2019; 170(6-7):296-299. PubMed ID: 31279087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of Quorum sensing inhibitors on the evolution of CRISPR-based phage immunity in Pseudomonas aeruginosa.
    Broniewski JM; Chisnall MAW; Høyland-Kroghsbo NM; Buckling A; Westra ER
    ISME J; 2021 Aug; 15(8):2465-2473. PubMed ID: 33692485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clustered Regularly Interspaced Short Palindromic Repeat-Dependent, Biofilm-Specific Death of Pseudomonas aeruginosa Mediated by Increased Expression of Phage-Related Genes.
    Heussler GE; Cady KC; Koeppen K; Bhuju S; Stanton BA; O'Toole GA
    mBio; 2015 May; 6(3):e00129-15. PubMed ID: 25968642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nutrient Availability and Phage Exposure Alter the Quorum-Sensing and CRISPR-Cas-Controlled Population Dynamics of Pseudomonas aeruginosa.
    Ahator SD; Sagar S; Zhu M; Wang J; Zhang LH
    mSystems; 2022 Aug; 7(4):e0009222. PubMed ID: 35699339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Type I CRISPR-Cas targets endogenous genes and regulates virulence to evade mammalian host immunity.
    Li R; Fang L; Tan S; Yu M; Li X; He S; Wei Y; Li G; Jiang J; Wu M
    Cell Res; 2016 Dec; 26(12):1273-1287. PubMed ID: 27857054
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacterial Physiology: Quorum sensing controls the cost of CRISPR-Cas.
    Hofer U
    Nat Rev Microbiol; 2017 Jan; 15(1):2-3. PubMed ID: 27890921
    [No Abstract]   [Full Text] [Related]  

  • 9. Quorum Sensing Controls Adaptive Immunity through the Regulation of Multiple CRISPR-Cas Systems.
    Patterson AG; Jackson SA; Taylor C; Evans GB; Salmond GPC; Przybilski R; Staals RHJ; Fineran PC
    Mol Cell; 2016 Dec; 64(6):1102-1108. PubMed ID: 27867010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conditions for the spread of CRISPR-Cas immune systems into bacterial populations.
    Elliott JFK; McLeod DV; Taylor TB; Westra ER; Gandon S; Watson BNJ
    ISME J; 2024 Jan; 18(1):. PubMed ID: 38896653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Requirements for Pseudomonas aeruginosa Type I-F CRISPR-Cas Adaptation Determined Using a Biofilm Enrichment Assay.
    Heussler GE; Miller JL; Price CE; Collins AJ; O'Toole GA
    J Bacteriol; 2016 Nov; 198(22):3080-3090. PubMed ID: 27573013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of direct repeats and spacers of CRISPR/Cas systems type I-F in Brazilian clinical strains of Pseudomonas aeruginosa.
    Luz ACO; da Silva JMA; Rezende AM; de Barros MPS; Leal-Balbino TC
    Mol Genet Genomics; 2019 Oct; 294(5):1095-1105. PubMed ID: 31098740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR-Cas systems restrict horizontal gene transfer in Pseudomonas aeruginosa.
    Wheatley RM; MacLean RC
    ISME J; 2021 May; 15(5):1420-1433. PubMed ID: 33349652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacterial Type I CRISPR-Cas systems influence inflammasome activation in mammalian host by promoting autophagy.
    Wu Q; Wang B; Zhou C; Lin P; Qin S; Gao P; Wang Z; Xia Z; Wu M
    Immunology; 2019 Nov; 158(3):240-251. PubMed ID: 31429483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suppressing the CRISPR/Cas adaptive immune system in bacterial infections.
    Gholizadeh P; Aghazadeh M; Asgharzadeh M; Kafil HS
    Eur J Clin Microbiol Infect Dis; 2017 Nov; 36(11):2043-2051. PubMed ID: 28601970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR-Cas systems exploit viral DNA injection to establish and maintain adaptive immunity.
    Modell JW; Jiang W; Marraffini LA
    Nature; 2017 Apr; 544(7648):101-104. PubMed ID: 28355179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How adaptive immunity constrains the composition and fate of large bacterial populations.
    Bonsma-Fisher M; Soutière D; Goyal S
    Proc Natl Acad Sci U S A; 2018 Aug; 115(32):E7462-E7468. PubMed ID: 30038015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptation in CRISPR-Cas Systems.
    Sternberg SH; Richter H; Charpentier E; Qimron U
    Mol Cell; 2016 Mar; 61(6):797-808. PubMed ID: 26949040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacterial alginate regulators and phage homologs repress CRISPR-Cas immunity.
    Borges AL; Castro B; Govindarajan S; Solvik T; Escalante V; Bondy-Denomy J
    Nat Microbiol; 2020 May; 5(5):679-687. PubMed ID: 32203410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR-Cas in Pseudomonas aeruginosa provides transient population-level immunity against high phage exposures.
    Watson BNJ; Capria L; Alseth EO; Pons BJ; Biswas A; Lenzi L; Buckling A; van Houte S; Westra ER; Meaden S
    ISME J; 2024 Jan; 18(1):. PubMed ID: 38366022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.